Subject: Re: object newbie
Posted by davidf on Thu, 10 Aug 2000 07:00:00 GMT

View Forum Message <> Reply to Message

Chip Sample (sample@idcomm.com) writes:

| must admit that based on comments from this list, | have experimented with
the object features of IDL for the past week or so, and have implemented
them in a few places in a fairly big widget code | have written.

>
>
>
>
> My initial observations are that there seems to be less of a temptation to
> use common blocks when objects are used. On the other hand my first

> impression was that an object is a structure whose fields can not be

> accessed until you write additional "methods" to get at each and every damn
> one of them. So my object was littered with about 25 "methods" just so |

> could pry the data out of the object.

Well, we typically write a GetProperty method and a SetProperty

method to get at things, but this will work too. :-)

> | eventually came on a work around to write a "proto_object" with a method

> allowing you to pass a string containing a tag name which returns the

> contents of the field with that tag name. This "proto_object" is inherited

> by all other objects | create just so | can use this method. Along the way

> | found that the TAG_NAMES function in IDL doesn't work for objects so | had
> to create one. It basically copies the object structure into a regular

> structure so the TAG_NAMES can be used.

>

>

Am | making this too hard?
No. You are becoming a righteous IDL programmer! :-)
Cheers,
David

P.S. There is still time to get your public service
requirement out of the way before the final IDL EPA
Membership Committee meeting in September. It wouldn't
take much more work than publishing this method. :-)

David Fanning, Ph.D.

Fanning Software Consulting

Phone: 970-221-0438 E-Mail: davidf@dfanning.com

Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

Page 1 of 8 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12137&goto=21140#msg_21140
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21140
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: object newbie
Posted by John-David T. Smith on Fri, 11 Aug 2000 07:00:00 GMT

View Forum Message <> Reply to Message

Martin Schultz wrote:
>

> Mark Hadfield wrote:
>>

> [...]

>

>> Also object properties are not strictly tied to the class

>> structure: GetProperty/SetProperty keywords can represent tags in the class
>> structure or they can be dynamically interpreted, thus hiding the

>> implementation details.

... to elaborate (because Chip calls himself an object newbie): | have
an example where | store among other things an array of structures
(actually objects of the same type) in the object (and | am in fact
using a container for this). Say this structure array is named
"campaigns". In my GetProperty method | then have keywords to access
- the complete array as objects campaigns=campaigns
- the campaigns data as structrues struc_campaigns=struc_campaigns

- only the campaign names chames=cnames
- only the campaign dates cdates=cdates
etc.

Specific retrieval methods (usually functions then) enhance the
flexibility of the access. E.g.
GetCampaignDates(name=name) can be used to retrieve the dates for
campaigns selected by name
(including a pattern match) -- this is
something | would consider
"value added feature" when you use
objects.

The GetProperty method may in fact use the special retrieval methods to
extract things. As long as you store only small amounts of data, it

won't matter if you access the campaigns structure array several times
and pass parts of it between methods. If you envision huge amounts of
data you may want to think more carefully how often these arrays must be
copied. | haven't dealt with these issues yet, but | would be happy to

hear comments.

Cheers,
Martin

VVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYVYV

It should be pointed out that the GetProperty procedures outlined in the prior
postings are fully functional only when the _REF_EXTRA keyword is employed (in

Page 2 of 8 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12137&goto=21126#msg_21126
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21126
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

fact it was created by RSI due to this failing). This allows proper keyword
inheritance when chaining up to the properties of superclasses -- the only other
option is enumerating in the keyword list all superclass properties, which of
course is an egregious violation of encapsulation... But of course, all this

still does not excuse the inflexible encapsulation functionality IDL's object
framework presents us.

Remember to give those properties unique names -- if you follow the data member
naming convention as Martin does (e.g. cnames=cnames) you'll avoid risking
namespace conflicts an additional time, since you have to worry about it with
INHERIT'ing anyway. This leaves only the computed ("dynamically interpreted")
property names to worry over.

As far as the array copying issue, for dealing with those properties which are
truly large, the only way to pass by reference out of your GetProperty method is
to use pointers... which is actually good: imagine the confusion of having
otherwise unremarkable variables as silent referents to object data members.
Pointers are your friends.

An additional side note: | think a basic concern people have with pointer usage
is memory management -- forgetting to free pointers at the right time, or the
awkwardness of having to free them. When you have various nested levels of
pointers to structures with pointers to arrays of pointers, etc., it can get

ugly. There are a few tricks to make freeing pointers at cleanup (object or
otherwise) less cumbersome. They rely on a few convenient properties of
ptr_free:

1. The fact that you may free a null pointer with impunity.
2. Arguments (of which there may be any number), are freed from first to last.
3. Pointers in arrays can be freed all at once by passing the array.

Consider this statement:

if ptr_valid(self.Recs) then $
ptr_free,(*self.Recs).Ints,(*self.Recs).Time,self.Recs

self.Recs is a pointer to a struct containing various other pointers (like Ints
and Time), which may or may not be defined (i.e. they might be null pointers).
Rather than pedantically test all of the cases before freeing each field and
then, and only then, free the higher level pointer, | rely on properties #1 &

#2. | can free self.Recs ptr field members and the pointer itself all in one

go. No worry about the chicken before the egg scenario, or undefined
pointers.

Consider a pointer to an array of pointers: self.parr. Freeing it is as simple
as:

if ptr_valid(self.parr) then ptr_free,*self.parr,self.parr

Page 3 of 8 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

This works even if any or all of the pointers are null -- a general assumption
for which | always allow. With these few properties of ptr_free you can really
reduce the hassle of cleaning up after yourself. Allowing any pointer to be a
potential null pointer also allows you to prune various things from your data
structure before cleanup, to save them for other uses. Simply do something
like:

kept_ptr=self.saveme
self.saveme=ptr_new()

This technique has a myriad of uses -- but that's another article.

Good Luck,

JD

J.D. Smith "\ WORK: (607) 255-6263
Cornell University Dept. of Astronomy */ (607) 255-5842
304 Space Sciences Bldg. "\ FAX: (607) 255-5875
Ithaca, NY 14853 */

Subject: Re: object newbie
Posted by Martin Schultz on Fri, 11 Aug 2000 07:00:00 GMT

View Forum Message <> Reply to Message

Mark Hadfield wrote:
>

> Also object properties are not strictly tied to the class

> structure: GetProperty/SetProperty keywords can represent tags in the class
> structure or they can be dynamically interpreted, thus hiding the

> implementation details.

>

... to elaborate (because Chip calls himself an object newbie): | have
an example where | store among other things an array of structures
(actually objects of the same type) in the object (and | am in fact
using a container for this). Say this structure array is named
"campaigns”. In my GetProperty method | then have keywords to access
- the complete array as objects campaigns=campaigns
- the campaigns data as structrues struc_campaigns=struc_campaigns

- only the campaign names cnames=cnames
- only the campaign dates cdates=cdates
etc.

Page 4 of 8 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12137&goto=21134#msg_21134
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21134
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Specific retrieval methods (usually functions then) enhance the
flexibility of the access. E.g.
GetCampaignDates(name=name) can be used to retrieve the dates for
campaigns selected by name
(including a pattern match) -- this is
something | would consider
"value added feature" when you use
objects.

The GetProperty method may in fact use the special retrieval methods to
extract things. As long as you store only small amounts of data, it

won't matter if you access the campaigns structure array several times
and pass parts of it between methods. If you envision huge amounts of
data you may want to think more carefully how often these arrays must be
copied. | haven't dealt with these issues yet, but | would be happy to

hear comments.

Cheers,
Martin

L

[[Dr. Martin Schultz Max-Planck-Institut fuer Meteorologie [[

[l Bundesstr. 55, 20146 Hamburg i
[l phone: +49 40 41173-308 [l

Il fax: +49 40 41173-298 i

[[martin.schultz@dkrz.de [l

L T

Subject: Re: object newbie
Posted by Mark Hadfield on Fri, 11 Aug 2000 07:00:00 GMT

View Forum Message <> Reply to Message

"David Fanning" <davidf@dfanning.com> wrote in message
news:MPG.13fd20f4e909bd8c989bba@news.frii.com...

> Chip Sample (sample@idcomm.com) writes:

>

>> | eventually came on a work around to write a "proto_object" with a
method

>> allowing you to pass a string containing a tag name which returns the
>> contents of the field with that tag name. This "proto_object" is
inherited

>> Dy all other objects | create just so | can use this method. Along the
way

Page 5 of 8 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1027
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12137&goto=21139#msg_21139
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21139
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> | found that the TAG_NAMES function in IDL doesn't work for objects so |
had

>> to create one. It basically copies the object structure into a regular

>> structure so the TAG_NAMES can be used.

>>

>> Am | making this too hard?

>

> No. You are becoming a righteous IDL programmer! :-)

| don't quite agree with David. There is a conventional way of accessing
object properties, i.e. via keywords to the SetProperty and GetProperty
methods. | suggest you explore this convention and get a feel for its
strengths and weaknesses before you try anything else. It's similar to what
you've developed, but it uses keywords rather than strings. This means that
it can take advantage of keyword inheritance and allows abbreviation of
property names. Also object properties are not strictly tied to the class
structure: GetProperty/SetProperty keywords can represent tags in the class
structure or they can be dynamically interpreted, thus hiding the
implementation details.

Mark Hadfield

m.hadfield@niwa.cri.nz http://katipo.niwa.cri.nz/~hadfield/
National Institute for Water and Atmospheric Research
PO Box 14-901, Wellington, New Zealand

Subject: Re: object newbie
Posted by Martin Schultz on Mon, 14 Aug 2000 07:00:00 GMT

View Forum Message <> Reply to Message

"J.D. Smith" wrote:

>

> Martin Schultz wrote:

>>

>>

>>

>> The GetProperty method may in fact use the special retrieval methods to
>> extract things. As long as you store only small amounts of data, it

>> won't matter if you access the campaigns structure array several times
>> and pass parts of it between methods. If you envision huge amounts of
>> data you may want to think more carefully how often these arrays must be
>> copied. | haven't dealt with these issues yet, but | would be happy to

>> hear comments.

>>

>> Cheers,

>> Martin

>

Page 6 of 8 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12137&goto=21256#msg_21256
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21256
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

And J.D. Smith commented:

As far as the array copying issue, for dealing with those properties which are
truly large, the only way to pass by reference out of your GetProperty method is
to use pointers... which is actually good: imagine the confusion of having
otherwise unremarkable variables as silent referents to object data members.
Pointers are your friends.

VVVVYVYVYVYVYV

| fully agree, but ... ;-)

| am currently reworking a netcdf file object (based in turn on a
geenric datafile object, but that"s a detail), and | am thinking about
how to best achieve the two conflicting goals:

* allow flexible access to subportions of the data

* minimize memory usage

What | envision is a method that would allow something like
thefile->GetData, variables=['03','co’], /include_dimensions,

lon=,lat=
which should return an array containing only the selected data. But this
means that | have to copy the data rather than pass a pointer back,
because otherwise the next access with a different range would overwrite
the data stored in the object and thus render the first pointer
“invalid" in the sense that it would point to something different now.
The problem arises, because | do not want to read in the whole field
first and then extract what | need but | want to take advantage of
netcdf's capabilitity to extract a subset of the data directly from the
file. So, the data will be loaded dynamically only when requested. On
the other hand it will also be possible to retrieve the complete
variable data from the file and do the extraction in memory, which may
be considerably faster if you need frequent access to various portions
of the data. For example, the dimension variables

(for non-netcdf'ers: these are variables holding the values of the
dimensions of other variables.

Example: a model ozone field may have dimensions LON, LAT, and LEV,
then LON will be a variable

named LON which contains the longitude values, i.e. 2.5, 7.5, 12.5,
... 357.5 on a rather coarse grid)
will always be loaded into memory and accessed from there. Makes things
a little more convoluted if | want to support write access to the netcdf
file as well (which | do want), but it's a nice challenge, and
thanks to the beauty of objects, the user doesn't have to care a dent.

As to pointer freeing: | remember that it took me three or four attempts

Page 7 of 8 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

(about 15 years ago) before | had a vague idea what a pointer was and
how one could use one. Well, this was Pascal (maybe Borland 3 or so),
and things have certainly changed since then (my little daughters
learned about pointers at age 2 already: "Where is pointer, where is
pointer? Here | am..."). But the key to not loosing pointers nor data is
that you should make it clear to yourself where your data actually
resides. What often helps me is the concept of a "master pointer", i.e.
the one pointer that got the data passed first. And then | usually only
allow the master pointer to free the data. All other pointers are
considered local variables (they are just unsigned longs in a sense),
and | don't need to care about memory allocation or freeing for these.
Example:

master = Ptr_New(data) ; this is the master pointer

other = master ; this is only a local pointer

(*other) = (*other)*0.5 ; this operation affects the data
which is conceptually stored in master

Ptr_Free, master ; free memory

So, you don't have to worry about the fate of other at all (just that
one should of course check if it is a valid pointer before using it).
[excerpt from b2p2 = beginners' guide to pointers, unpublished material,

2000, copyright = left]

Cheers,
Martin

L

[[Dr. Martin Schultz Max-Planck-Institut fuer Meteorologie [[

([Bundesstr. 55, 20146 Hamburg l
([phone: +49 40 41173-308 [l

[l fax: +49 40 41173-298 1

[[martin.schultz@dkrz.de [l

Lo teeeee

Page 8 of 8 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

