Subject: Vectorization question
Posted by Liam E. Gumley on Mon, 11 Sep 2000 21:51:01 GMT

View Forum Message <> Reply to Message

Given the following arrays

intarr(10)
[2,2,2,3,3,4]
[1,3,4,2,1, 8]

a
X
b
How would | vectorize the following operation

fori =0, n_elements(x) - 1 do a[x[i]] = a[x[i]] + b[i]

To achieve this result

print, a, format="(10i4)’
0083800000

In the real-world case where this occurs, | need to repeat this kind of
operation several hundred times, where the size of 'a’ is around
1,000,000 and the size of 'x' is around 100,000 (‘a' and 'b' are float
type in the real-world case).

Many thanks for any suggestions.
Cheers,

Liam.
http://cimss.ssec.wisc.edu/~gumley

Subject: Re: Vectorization question
Posted by Liam E. Gumley on Thu, 14 Sep 2000 07:00:00 GMT

View Forum Message <> Reply to Message

This will be my last post on this topic: please accept my apologies.

Liam Gumley <Liam.Gumley@ssec.wisc.edu> wrote in message
news:8prgam$e4o$l@news.doit.wisc.edu...

> | forgot FORTRAN uses 1-based indices by default. What | *meant* to say
was:

subroutine vecaddl(a, na, X, nx, b)
integer*4 na, nx
real*4 a(0:na-1), b(0:nx-1)
integer*4 x(0:nx-1), i
doi=0,nx-1

a(x() = a(x() + b

VVVVYVYVYV

Page 1 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3379
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12329&goto=21705#msg_21705
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21705
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3379
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12329&goto=21759#msg_21759
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21759
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> end do
> end

The SGI compiler doesn't like this code for some reason. So | switched back
to the original FORTRAN source, and changed the IDL wrapper function to
read:

X = ((long(index) > OL) < (n_elements(a) - 1L)) + 1L
which converts the zero-based IDL indices to one-based FORTRAN indices. Then
everything works as advertised. This is a better approach anyway, because it

allows existing FORTRAN code to be used without modification.

Cheers,
Liam.

Subject: Re: Vectorization question
Posted by Liam E. Gumley on Thu, 14 Sep 2000 07:00:00 GMT

View Forum Message <> Reply to Message

Liam E. Gumley <Liam.Gumley@ssec.wisc.edu> wrote in message
news:39C1179A.EFOCAO4E@ssec.wisc.edu...
> ¢ ... This is the routine which does the work.
> ¢ ... The arguments are defined exactly the same as in the
. call_external procedure call in IDL.
subroutine vecaddl(a, na, x, nx, b)
integer*4 na, nx
real*4 a(na), b(nx)
integer*4 x(nx), i

VVVVYVYVYVYVYV
(@)

doi=1, nx

a(x(i) = a(x(i)) + b(i)
end do
end

| forgot FORTRAN uses 1-based indices by default. What | *meant* to say was:

subroutine vecaddl(a, na, x, nx, b)
integer*4 na, nx

real*4 a(0:na-1), b(0:nx-1)
integer*4 x(0:nx-1), i

doi=0,nx-1
a(x(i) = a(x() + b(i)
end do
end
Cheers,

Liam.

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3379
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12329&goto=21760#msg_21760
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21760
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Vectorization question
Posted by Liam E. Gumley on Thu, 14 Sep 2000 07:00:00 GMT

View Forum Message <> Reply to Message

"Liam E. Gumley" wrote:

> | run IDL 5.3 on SGI IRIX 6.4, so the compile went as follows:
>

> 9% f77 -n32 -KPIC -u -fullwarn -c vecadd.f

> 9% |d -n32 -0 vecadd.so vecadd.o

For compiler flags on other UNIX platforms, see
$IDL_DIR/external/call_external/Fortran/Makefile

Cheers,
Liam.

Subject: Re: Vectorization question
Posted by Liam E. Gumley on Thu, 14 Sep 2000 07:00:00 GMT

View Forum Message <> Reply to Message

"Liam E. Gumley" wrote:
> | run IDL 5.3 on SGI IRIX 6.4, so the compile went as follows:

% f77 -n32 -KPIC -u -fullwarn -c vecadd.f
% Id -n32 -0 vecadd.so vecadd.o

vV V V

What | meant to say was
% Id -n32 -shared -0 vecadd.so vecadd.o

Cheers,
Liam.

Subject: Re: Vectorization question
Posted by Liam E. Gumley on Thu, 14 Sep 2000 07:00:00 GMT

View Forum Message <> Reply to Message

"Liam E. Gumley" wrote:
Given the following arrays

r(10)
3,3, 4]
2,1, 8]

intar
2, 2,2,
[1, 3, 4,

>
>
> a
> X
> Db
>
> How would | vectorize the following operation
>

Page 3 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3379
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12329&goto=21764#msg_21764
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21764
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3379
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12329&goto=21765#msg_21765
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21765
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3379
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12329&goto=21766#msg_21766
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21766
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

fori =0, n_elements(x) - 1 do a[x[i]] = a[x[i]] + b[i]
To achieve this result

print, a, format='(10i4)'
0083800000

In the real-world case where this occurs, | need to repeat this kind of
operation several hundred times, where the size of 'a’' is around
1,000,000 and the size of 'x" is around 100,000 (‘a" and 'b' are float
type in the real-world case).

VVVVYVVVYVYVYVYV

It dawned on me that this is a perfect case for an external routine.

Following the example in the 'External Development Guide' for calling a
FORTRAN routine with a FORTRAN wrapper, | created the following source
file named vecadd.f

c ... This s the interface routine called by IDL
subroutine vecadd(argc, argv)
integer*4 argc, argv(*), j
J = loc(argc)
call vecaddl1(%val(argv(l)), %val(argv(2)), %oval(argv(3)),
& %val(argv(4)), %val(argv(5)))
end

C ... This is the routine which does the work.
C ... The arguments are defined exactly the same as in the
Cc ... call_external procedure call in IDL.

subroutine vecaddl(a, na, X, nx, b)

integer*4 na, nx

real*4 a(na), b(nx)

integer*4 x(nx), i

doi=1, nx

a(x(i) = a(x() + b(i)
end do
end

| run IDL 5.3 on SGI IRIX 6.4, so the compile went as follows:

% f77 -n32 -KPIC -u -fullwarn -c vecadd.f
% Id -n32 -0 vecadd.so vecadd.o

The IDL wrapper for this routine is named vecadd.pro:

FUNCTION VECADD, ARRAY, INDEX, VALUE

Page 4 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;- Check arguments
if (n_elements(array) eq 0) then $
message, 'Argument A is undefined'
if (n_elements(index) eq 0) then $
message, 'Argument X is undefined'
if (n_elements(value) eq 0) then $
message, 'Argument B is undefined'
if (n_elements(index) ne n_elements(value)) then $
message, 'Arguments X abd B must have the same number of elements’

;- Create copies of the arguments with correct type
a = float(array)

x = (long(index) > OL) < (n_elements(a) - 1L)

b = float(value)

;- Call the external routine
result = call_external('vecadd.so', 'vecadd_', $
a, n_elements(a), X, n_elements(x), b)

.- Return result
return, a

So the operation | described is now quite simple:

a = fltarr(10)

X=[2,2,2,3,3,4]

b=1[1,3,4,2,1,8]

result = vecadd(a, x, b)

help, result

RESULT FLOAT = Array[10]

print, result, format="(10i4)’
0838000000

The result is always returned as FLOAT, which is what | really wanted
anyway. For the large arrays | described, VECADD is at least 10 times
faster than a loop.

Thanks IDL!

Cheers,

Liam.

http://cimss.ssec.wisc.edu/~gumley

PS: Pavel, thanks for your suggestion as well.

Page 5 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Vectorization question
Posted by Struan Gray on Fri, 15 Sep 2000 07:00:00 GMT

View Forum Message <> Reply to Message

Liam E. Gumley, Liam.Gumley@ssec.wisc.edu writes:

> How would | vectorize the following operation
>

> fori=0, n_elements(x) - 1 do a[x[i]] = a[x[i]] + b[i]

I've often wondered if IDL could be modified internally to allow
an implicit loop where the loop variable is only used for indexing
arrays. I've hit several situations where | want to do this sort of
thing, but don't want to write external routines and don't have the
memory to use the 2D trick.

Oh well.

Struan
PS: I tried hard to use HISTOGRAM, but just ended up looping
through the reverse indices array, which a priori is no faster.

Subject: Re: Vectorization question
Posted by promashkin on Sun, 17 Sep 2000 07:00:00 GMT

View Forum Message <> Reply to Message

I'll clock it on Monday, Craig. All | have at home is 5.1 on an AMD k6 200.
The time required on this one will not fit in one line without wrapping
these days :-)

Cheers,

Pavel

> Pavel, can you compare? :-)

Subject: Re: Vectorization question
Posted by Craig Markwardt on Mon, 18 Sep 2000 07:00:00 GMT

View Forum Message <> Reply to Message

Pavel Romashkin <promashkin@cmdl.noaa.gov> writes:
> |IDL> pavel, a, b, x, iter=10

> 5.6166667

> IDL> craig, a, b, X, iter=10

> 4.7333333

>

> Just as | expected, Craig's code is more efficient than mine (the magic

Page 6 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1284
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12329&goto=21757#msg_21757
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21757
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3353
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12329&goto=21744#msg_21744
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21744
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12329&goto=21734#msg_21734
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21734
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> of Histogram!). Good answer to those "when to use a loop" questions.
> IDL 5.3, PowerMac G4-400.

Woohoo! :-)
Craig

["Just as expected." Jeez... | would argue they are about equally
efficient to first order. My code is definitely sensitive to the
distribution of repeats. If there is a very wide range in the
number of repeats then my code will be impacted.]

Craig B. Markwardt, Ph.D. EMAIL: craigmnet@cow.physics.wisc.edu
Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response

Subject: Re: Vectorization question
Posted by promashkin on Mon, 18 Sep 2000 07:00:00 GMT

View Forum Message <> Reply to Message

In fact, my first idea was to try Histogram to do this. But | could

never claim | reached perfection with it, as Craig did.

| tested the code, and here are the results (once | converted A and B to
FLOAT to clear the embarassing "floating illegal operand"” that was
produced by my code when operating on LONG type arrays):

IDL> liam, a, b, x
% Array requires more memory than IDL can address.
% Execution halted at: LIAM 40 untitled_1.pro
% $MAINS
IDL> pavel, a, b, X, iter=10

5.6166667
IDL> craig, a, b, X, iter=10

4.7333333

Just as | expected, Craig's code is more efficient than mine (the magic
of Histogram!). Good answer to those "when to use a loop" questions.
IDL 5.3, PowerMac G4-400.

Cheers,

Pavel

Page 7 of 7 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3353
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12329&goto=21736#msg_21736
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21736
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

