
Subject: Convolution of Stick Spectra
Posted by tclement on Sat, 09 Sep 2000 22:28:49 GMT
View Forum Message <> Reply to Message

Hi all...

In my on-going effort to speed up the code in our lab, I have another
'challenge' for you (I have to put 'challenge' in quotes because it seems
that no matter what I ask, someone knows the ansewr off (or at least
nearly off) the top of their head!)

We have a situation where we need to convolute (with energy dependent
gaussians) a number of stick spectra on a well-defined energy axis. The
stick spectra are read in from another program as a 2-dimensional array,
using ddread. The [0,*] elements are the energies of the sticks, and the
[1,*] values are the intensities. These have no inherent spacing, they are
just calculated intensities at whatever energy the calculation returns.

We want to convolute these with gaussians on a regular energy axis, so we
declare our energy array from 0 to 4, as shown below.

The only way I've found to do the convolution, since the x axes don't
match on the two arrays, is to do the following (slow) for loop:

convoluted = fltarr( 2, 2048 )
convoluted[0,*] = findgen( 2048 ) / 2047. * 4.

;; Let's fake a stick spectrum, we usually have at least this many elements
stick = abs(randomn( systime(1), 2, 5000 ))
stick[0,*] = stick[0,*] * 4.
stick[1,*] = stick[1,*] * 1000.

for i=0L, n_elements( stick ) / 2 -1 do $
     convoluted[1,*] = stick[1,i]*exp(-((convoluted[0,*] - stick[0,i])^2)/ $
                 (((.12*sqrt(stick[0,i]/1000))/1.6651)*1000)^2) $
                 + convoluted[1,*]

So the question becomes, is there any way to speed this up? I thought of
using a larger convoluted array with multiple dimensions and using total()
somehow, but I couldn't think of how to do that.

Thanks in advance (and in retrospect) for all the help!
Todd

Subject: Re: Convolution of Stick Spectra
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Posted by Craig Markwardt on Sun, 17 Sep 2000 07:00:00 GMT
View Forum Message <> Reply to Message

mole6e23@hotmail.com (Todd Clements) writes:

>  craigmnet@cow.physics.wisc.edu wrote:
>  
>> After looking at your problem it looks like the widths of the lines
>> are as wide as your energy range.  I guess this would be appropriate
>> [snip..]
>> so many exponentiations.  You could have gotten a pretty big savings
>> if the lines were narrow, and you could restrict the computation to a
>> narrow region around the line center (say +/- 10 sigma with WHERE).  I
>> recommend that anyway to get rid of underflow errors.
>> [snip..]
>> If for example your sigma term were
>> (((.12*sqrt(stick[0,i]/1000))/1.6651)*10) [ note the last factor is
>> smaller ] then things start to look interesting.
>  
>  That's because there's always a danger in taking code x and modifying it
>  into simpler example y! As you suggested, I actually DO have a sigma term
>  with a *10 instead of a *1000.
>  
>  I did what you suggested with the +/- 10*sigma with where (code below),
>  and it drastically improved running time. For the 5000 element array, the
>  running time went from 62.3 seconds to 4.9 seconds! I plot the error
>  associated with the method, and I was actually able to go down to +/-
>  4*sigma before there was any noticable error.
>  
>  Thanks!
>  Todd

You're welcome.  But call me a pedant too.  You can save yet more
computations by precomputing the gaussian argument.

Craig

xx = convoluted(0,*)
yy = convoluted(1,*)
for i = 0L, n_elements(stick)/2 -1 do begin
  z1 = (xx-stick(0,i))/(((.12*sqrt(stick[0,i]/1000))/1.6651)*10)^2
  wh = where(z1 LT (2.*4^2), ct)  ;; Four sigma (remember the 1/2!)
  if ct GT 0 then yy(wh) = yy(wh) + stick(1,i)*exp(-z1)
endfor
convoluted(1,*) = yy

I hope I got it all right, but you get the idea.  By the way, as I
note above, the definition of the gaussian is exp(-x^2/(2*sigma^2)).
Is the 1/2 buried somewhere in your definition?
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-- 
 ------------------------------------------------------------ --------------
Craig B. Markwardt, Ph.D.         EMAIL:    craigmnet@cow.physics.wisc.edu
Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response
 ------------------------------------------------------------ --------------

Subject: Re: Convolution of Stick Spectra
Posted by mole6e23 on Sun, 17 Sep 2000 07:00:00 GMT
View Forum Message <> Reply to Message

craigmnet@cow.physics.wisc.edu wrote:

> After looking at your problem it looks like the widths of the lines
> are as wide as your energy range.  I guess this would be appropriate
> [snip..]
> so many exponentiations.  You could have gotten a pretty big savings
> if the lines were narrow, and you could restrict the computation to a
> narrow region around the line center (say +/- 10 sigma with WHERE).  I
> recommend that anyway to get rid of underflow errors.
> [snip..]
> If for example your sigma term were
> (((.12*sqrt(stick[0,i]/1000))/1.6651)*10) [ note the last factor is
> smaller ] then things start to look interesting.

That's because there's always a danger in taking code x and modifying it
into simpler example y! As you suggested, I actually DO have a sigma term
with a *10 instead of a *1000.

I did what you suggested with the +/- 10*sigma with where (code below),
and it drastically improved running time. For the 5000 element array, the
running time went from 62.3 seconds to 4.9 seconds! I plot the error
associated with the method, and I was actually able to go down to +/-
4*sigma before there was any noticable error.

Thanks!
Todd

--

pro test

 convoluted = fltarr( 2, 2048 )
 convoluted[0,*] = findgen( 2048 ) / 2047. * 4.
 convoluted2 = convoluted
 
 ;; Let's fake a stick spectrum, we usually have at least this many elements
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 stick = abs(randomn(10, 2, 5000 ))
 stick[0,*] = stick[0,*] * 4.
 stick[1,*] = stick[1,*] * 1000.

 time=systime(1) 
 for i=0L, n_elements( stick ) / 2 -1 do $
      convoluted[1,*] = stick[1,i]*exp(-((convoluted[0,*] - stick[0,i])^2)/ $
                  (((.12*sqrt(stick[0,i]/1000))/1.6651)*10)^2) $
                  + convoluted[1,*]

 time2 = systime(1)
 for i=0L, n_elements( stick ) / 2 -1 do begin
     ;; Find range
     sigma = (((.12*sqrt(stick[0,i]/1000))/1.6651)*10)
     range = where( convoluted2[0,*] ge (stick[0,i]-4*sigma) and $
                    convoluted2[0,*] le (stick[0,i]+4*sigma) )

     if( range[0] ne -1 ) then $
       convoluted2[1,range] = stick[1,i]*exp(-((convoluted2[0,range] -  $
                             stick[0,i])^2)/sigma^2) $
                             + convoluted2[1,range]
 endfor

 print, 'time old: ', time2-time
 print, 'time new: ', systime(1)-time2
 
 new = convoluted
 new[1,*] = new[1,*] - convoluted2[1,*]

 plot,new[0,*], new[1,*],yrange=[-10,10]

end ;; test

Subject: Re: Convolution of Stick Spectra
Posted by Craig Markwardt on Sun, 17 Sep 2000 07:00:00 GMT
View Forum Message <> Reply to Message

Hi Todd--

After looking at your problem it looks like the widths of the lines
are as wide as your energy range.  I guess this would be appropriate
if you were using proportional counters to detect X-ray lines :-)
Because of this it doesn't seem like you need a super accurate
representation of the gaussian. 

The biggest cost appears to be associated with the computation of the
EXP() function, so you will need to reduce the number of computations.
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Vectorizing further probably won't help since you are compute-bound by
so many exponentiations.  You could have gotten a pretty big savings
if the lines were narrow, and you could restrict the computation to a
narrow region around the line center (say +/- 10 sigma with WHERE).  I
recommend that anyway to get rid of underflow errors.

I tried a spline interpolation, based on a precomputed gaussian
temlate, but again given the broadness of your lines, it doesn't
really save anything.

If for example your sigma term were
(((.12*sqrt(stick[0,i]/1000))/1.6651)*10) [ note the last factor is
smaller ] then things start to look interesting.

Why isn't your energy grid coarser?  Why aren't you using an honest to
goodness response matrix?

Cheers,
Craig

tclement@ucsd.edu (Todd Clements) writes:

>  Hi all...
>  
>  In my on-going effort to speed up the code in our lab, I have another
>  'challenge' for you (I have to put 'challenge' in quotes because it seems
>  that no matter what I ask, someone knows the ansewr off (or at least
>  nearly off) the top of their head!)
>  
>  We have a situation where we need to convolute (with energy dependent
>  gaussians) a number of stick spectra on a well-defined energy axis. The
>  stick spectra are read in from another program as a 2-dimensional array,
>  using ddread. The [0,*] elements are the energies of the sticks, and the
>  [1,*] values are the intensities. These have no inherent spacing, they are
>  just calculated intensities at whatever energy the calculation returns.
>  
>  We want to convolute these with gaussians on a regular energy axis, so we
>  declare our energy array from 0 to 4, as shown below.
>  
>  The only way I've found to do the convolution, since the x axes don't
>  match on the two arrays, is to do the following (slow) for loop:
>  
>  convoluted = fltarr( 2, 2048 )
>  convoluted[0,*] = findgen( 2048 ) / 2047. * 4.
>  
>  ;; Let's fake a stick spectrum, we usually have at least this many elements
>  stick = abs(randomn( systime(1), 2, 5000 ))
>  stick[0,*] = stick[0,*] * 4.
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>  stick[1,*] = stick[1,*] * 1000.
>  
>  for i=0L, n_elements( stick ) / 2 -1 do $
>       convoluted[1,*] = stick[1,i]*exp(-((convoluted[0,*] - stick[0,i])^2)/ $
>                   (((.12*sqrt(stick[0,i]/1000))/1.6651)*1000)^2) $
>                   + convoluted[1,*]
>  
>  
>  So the question becomes, is there any way to speed this up? I thought of
>  using a larger convoluted array with multiple dimensions and using total()
>  somehow, but I couldn't think of how to do that.
>  
>  Thanks in advance (and in retrospect) for all the help!
>  Todd

-- 
 ------------------------------------------------------------ --------------
Craig B. Markwardt, Ph.D.         EMAIL:    craigmnet@cow.physics.wisc.edu
Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response
 ------------------------------------------------------------ --------------

Subject: Re: Convolution
Posted by Alex Schuster on Wed, 12 Sep 2001 14:20:38 GMT
View Forum Message <> Reply to Message

Kay Bente writes:

>  I have to convolute a 256x256x128 Floating Point array with a 3D Gaussian
>  Kernel of ~ 30x30x30, this lasts round about 45Minutes. So my question is,
>  if there is any way how i can speed this up. I tried to separate this in
>  each dimension with a 1D Kernel, but I donï¿½t know if I have done this
>  correct (cause the procedure hangs up after a few loops)
>  
>  I know that the Convolution of two functions is a Multiplication in Fourier
>  Space, but how can I do this with discrete arrays, do I have to enlarge my
>  kernel to the size of the array i want to smooth? If so, the creation of the
>  kernel with the dimensions of my array nearly lasts as long as the normal
>  convolution :-(

I use the routine PSF_GAUSSIAN() to create these kernels, speed is no
problem there. The kernel has the same size as the orignal image, but
that's no problem in fourier space.
Here is some code I ripped from one of my programs. Computation takes
some seconds, not 45 minutes :)

pix = [ aat.x_pixel_size, aat.y_pixel_size, aat.z_pixel_size ]
r = float( radius ) / 10.0
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xywidth = long( 0.5 + r/pix[0] )
zwidth = long( 0.5 + r/pix[2])

; dim[0] and dim[1] are powers of 2, make make dimz a power of 2, too,
; and use it instead of dim[2]
dimz = 4
while ( dim[2] ge dimz ) do dimz = dimz * 2
startz = (dimz-dim[2]) / 2

filter_kernel = complexarr( dim[0], dim[1], dimz )
filter_kernel[0,0,0] = psf_gaussian( $
			npixel=[dim[0]-1,dim[1]-1,dimz-1], $
			ndimen=3, $
			fwhm=[xywidth, xywidth, zwidth], /normalize )
filter_kernel = fft( shift( temporary( filter_kernel ), $						   
dim[0]/2+1, dim[1]/2+1, dimz/2+1 ) )

filt_image = complexarr( dim[0], dim[1], dimz )
filt_image[dim[0]*dim[1]*startz] = image
filt_image = fft( fft( temporary( filt_image ) ) * filter_kernel,
/inverse ) $
	   * filter_mask

        Alex
-- 
  Alex Schuster     Wonko@planet-interkom.de
                    alex@pet.mpin-koeln.mpg.de

Subject: Re: Convolution
Posted by Jaco van Gorkom on Wed, 12 Sep 2001 14:22:38 GMT
View Forum Message <> Reply to Message

Kay Bente wrote:
>  I have to convolute a 256x256x128 Floating Point array with a 3D Gaussian
>  Kernel of ~ 30x30x30, this lasts round about 45Minutes. So my question is,
>  if there is any way how i can speed this up. I tried to separate this in
>  each dimension with a 1D Kernel, but I donï¿½t know if I have done this
>  correct (cause the procedure hangs up after a few loops)

Manually looping through slices of the array shouldn't be necessary. It is
possible to use 3D kernel arrays which extend over only one dimension:
  kernel_x = fltarr(30,1,1)
  kernel_y = fltarr(1,30,1)
  kernel_z = fltarr(1,1,30)
and then just apply three convol statements like
  iresult = convol(             array, kernel_x)
  iresult = convol(temporary(iresult), kernel_y)
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  result  = convol(temporary(iresult), kernel_z)
The only tricky bit is that IDL tends to remove the trailing dimension from
kernel_y at inconvenient times, most notably inside CONVOL if its type needs
to be converted.

I coded up a general function for the application of a 1D kernel to each
dimension of an n-dimensional array, see below. It cracks your array size in
52 seconds on my system, versus longer-than-coffee for the normal 3D CONVOL.

The multiplication in Fourier space sounds promising as well, maybe someone
else can comment?

Regards,
  Jaco

function symconvol, array, kernel, scale_factor, _ref_extra=extra
  ; Similar to CONVOL, can be of use for fully circularly symmetric,
  ; cubic kernels (e.g. Gauss). Applies 1D Kernel along each of the
  ; dimensions of Array. This should be faster than a direct 3D
  ; convolution for all but the smallest kernel sizes.
  ; Note: if scale_factor is specified, it will be applied multiple times
  ; (once for each dimension).
  ; Other arguments as for convol.
  ; written 12 Sept. 2001 by Jaco van Gorkom (gorkom@rijnh.nl),
  ;                       based on code by Kay Bente.

    if size(kernel, /n_dimensions) ne 1 then $
      message, 'One-dimensional vector expected for input parameter Kernel.'

    ; fix kernel data type to avoid losing trailing unit dimensions in
    ; later conversions:
    ikernel = fix(kernel, type=size(array,/type))
    ndims = size(array, /n_dimensions)
    kernelsize = n_elements(ikernel)
    kerneldims = replicate(1L, ndims)

    for dimcnt=0L, ndims-1 do begin
        ; make the ikernel extend along the current dimension:
        kerneldims[dimcnt] = kernelsize
        ikernel = reform(ikernel, kerneldims, /overwrite)
        ; convolve the input array (in the first step) or the intermediate
        ; result with ikernel:
        if dimcnt eq 0L then $
          if n_params() eq 3 then $
            result = convol(array, ikernel, scale_factor, _extra=extra) $
          else $
            result = convol(array, ikernel, _extra=extra) $
        else $
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          if n_params() eq 3 then $
            result = convol(temporary(result), ikernel, scale_factor, $
              _extra=extra) $
          else $
            result = convol(temporary(result), ikernel, _extra=extra)
        kerneldims[dimcnt] = 1L
    endfor

   return, result
end
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