Subject: Re: Problems with IDL call_external to C shared object
Posted by Mark Rivers on Thu, 12 Oct 2000 07:00:00 GMT

View Forum Message <> Reply to Message

I've done a lot of this, and it's not that hard, don't give up!
Here are some tricks:

- All arrays which need to be passed between IDL and C must be allocated in
IDL, as J.D. Smith said. This includes both arrays being passed from IDL to
C and from C back to IDL. Sometimes this requires an initial call to the C
code to return the array sizes which IDL will allocate, if the array sizes

are not known to IDL beforehand.

- Don't deallocate any arrays which were passed from IDL.

- Don't pass strings, rather pass byte arrays. It is much simpler. Convert
strings to byte arrays in IDL before or after the CALL_EXTERNAL call.

- Convert all output variables to the data type which C is expecting in the
CALL_EXTERNAL call.

> - What is the effect of the /CDECL keyword to CALL_EXTERNAL ?
> | tried with and without but no success.

This controls the calling convention. If your C function is being called
then you probably have this set correctly.

> - |Is it possible that the C program "forgets" something between
> the IDL CALL_EXTERNALsS ?

- As J.D. Smith said, it will forget anything which is not global or static.

> - How can | return an array via CALL_EXTERNAL or have | always
> to loop over calls returning scalars ? The EZCA library (channel

> access to EPICS control system) manages to return arrays, but |

> couldn't figure out how.

My EZCA code is rather opaque, since it uses macros which allow it to work
on both IDL and PV-WAVE, on Unix, VMS and Windows.

Here is a simple example. It is C code which computes the Mandelbrot set,
and is called from IDL.
argv[7] is a 2-D array.

void mandelbrot(int argc, void *argv(])

{

int nr = *(int *) argv[0];

Page 1 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3450
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12452&goto=21991#msg_21991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

int ni = *(int *) argv[1];
double rstart = *(double *) argv[2];
double istart = *(double *) argv[3];
double dr = *(double *) argv[4];
double di = *(double *) argv[5];
int max_iter = *(int *) argv[6];
int *result = argv([7];
inti, j, count;
double real, imag, rz, iz, sz2, rz2, iz2,;
for (i=0; i<ni; i++) {
imag = istart + i*di;
for (j=0; j<nr; j++) {
real = rstart + j*dr;

rz=0.;

iz=0.;

sz2 =0,

count = 0;

while ((count < max_iter) && (sz2 < 4.0)) {
rz2 =rz *rz,
iz2 =iz *iz;

iz=2.0%*rz*iz +imag;
rz=rz2-iz2 +real,
sz2 =rz2 +1iz2;
count++;

}

*result++ = count;

Here is the IDL code which calls the C code:

function mandelbrotl, xcenter, ycenter, radius, size, max_iter, xout, yout

if (n_elements(size) eq 0) then size=100

if (n_elements(max_iter) eq 0) then max_iter=255

dx = double(radius)*2/size

xstart = double(xcenter - radius)

xstop = double(xcenter + radius)

ystart = double(ycenter - radius)

ystop = double(ycenter + radius)

result = lonarr(size, size)

xout = xstart + findgen(size)*dx

yout = ystart + findgen(size)*dx

s = call_external('mandelbrot.dll', 'mandelbrot’, $
long(size), $
long(size), $

Page 2 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

double(xstart), $
double(ystart), $
double(dx), $
double(dx), $
long(max_iter), $
result)

return, result
end

Subject: Re: Problems with IDL call_external to C shared object
Posted by John-David T. Smith on Thu, 12 Oct 2000 07:00:00 GMT

View Forum Message <> Reply to Message

Streun Andreas wrote:

VVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

Hello -
who is experienced in running IDL with C shared objects?

I'm trying to make an IDL GUI for a rather complex C batch

program. The effects are rather strange: sometimes it works

perfectly, but mostly it doesn't: suddenly on the C-side strange

and wrong number appear in calculations leading to crashes. It seems
like something is initialized or dereferenced in a wrong way.

However the behaviour is determinsitic: a small change in the IDL
program like declaring a new variable anywhere causes the crash,

after undoing the change it works well again. Maybe a memory conflict ?

The C-program alone in batch mode runs reliably. It does a lot of
mallocs but never frees any memory (because it is batch).

IDL communicates via the CALL_EXTERNAL function.

I'm rather sure that | have checked the variables on both sides of the
fence are really of same type. (However I'm a poor C-programmer...)
I'm using IDL 5.3 on a Linux system and the GNU C-compiler.

Now the questions:

- Is it possible that IDL overwrites or frees memory allocated by the C
shared object ? Is there a general way to prevent it from doing so ?

- What is the effect of the /CDECL keyword to CALL_EXTERNAL ?
| tried with and without but no success.

- Is it possible that the C program "forgets" something between
the IDL CALL_EXTERNALSs ?

(important:)

Page 3 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12452&goto=21996#msg_21996
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21996
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

- Is there an opinion whether this problem can be solved in principle
and within finite time ?!

(has nothing to do with the problem but | would like to know:)

- How can | return an array via CALL_EXTERNAL or have | always
to loop over calls returning scalars ? The EZCA library (channel
access to EPICS control system) manages to return arrays, but |
couldn't figure out how.

VVVVYVVVYVYVYV

Thanks for any help.

The best way to use call_external I've found is to allocate all arrays,
variables, and strings on the IDL side and directly manipulate them
within the C program. Most variable types do *not* map directly between
IDL and C. Did you take a good look at
$IDL_DIR/external/call_external/C/, which contains lots of (small)
examples? Also see the "external.h" header for lots of info.

Another bit of confusion: IDL simply calls the function directly from

the shared library specified... the function is not at all linked in

(other than existing in a shared program stack), and variables will not

be preserved through successive function calls (unless they are declared
static or global).

An example of passing an array as a variable:
IDL_LONG showarray(int argc, void *argv(]) {
float *arr;
IDL_MEMINT *n_elem,i;
arr=(float *) argv[O0];
n_elem=(IDL_MEMINT *) argv[1];
printf("%d\n",*n_elem);
for(i=0;i<*n_elem:;i++)
printf("%d: %f\n"i,arr[i]); /* Don't printf, it's not nice! */
return 1,

}

which would be called via, e.g.:

IDL> ret=call_external('mylib.so’,'showarray',findgen(10),10)
Presumably if your code allocates it's own memory without cleaning up
after itself, it will be rather unstable. Unless you need to return

arrays of dynamic size/type, the originate-all-data-in-IDL method will

much simplify your life.

Good luck,

Page 4 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

JD

J.D. Smith | WORK: (607) 255-6263

Cornell Dept. of Astronomy | (607) 255-5842
304 Space Sciences Bldg. | FAX: (607) 255-5875

Ithaca, NY 14853 |

Subject: Re: Problems with IDL call_external to C shared object
Posted by Nigel Wade on Fri, 13 Oct 2000 07:00:00 GMT

View Forum Message <> Reply to Message

Mark Rivers wrote:
I've done a lot of this, and it's not that hard, don't give up!
Here are some tricks:

- All arrays which need to be passed between IDL and C must be allocated in
IDL, as J.D. Smith said. This includes both arrays being passed from IDL to
C and from C back to IDL. Sometimes this requires an initial call to the C
code to return the array sizes which IDL will allocate, if the array sizes

are not known to IDL beforehand.

VVVVVVVYVYVYVYV

Alternatively, you can use the LINKIMAGE or DLM interface where the C
code

can create any IDL variable required. Albeit at the expense of a greater
learning curve.

Nigel Wade, System Administrator, Space Plasma Physics Group,
University of Leicester, Leicester, LE1 7RH, UK

E-mail : nmw@ion.le.ac.uk

Phone : +44 (0)116 2523568, Fax : +44 (0)116 2523555

Page 5 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2519
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12452&goto=21984#msg_21984
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=21984
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

