Subject: Re: 10 bytes real
Posted by Craig Markwardt on Thu, 26 Oct 2000 15:31:05 GMT

View Forum Message <> Reply to Message

Thierry Wannier <thierry.wannier@unifr.ch> writes:

| want to analyse with IDL data obtained in the lab.

For this, | have to transfer and read on my PC the data which were
generated by a "home made" software running on a Mac.

Transfer: OK

Read with IDL:

| first fought successfully against a tribe a big-endians integer, then
found a way to cope with Booleans but now "I feel like a motherless
child" in front of a bunch of 10 bytes reals (IEEE).

Some suggestions?
Thanks: T.Wannier

VVVVYVVYVYVYVYVYV

Ten-byte reals. Ughh. Are you sure you can use something normal like
8-byte reals? IDL doesn't do 10-byte.

For 4- and 8-byte reals | am personally hooked on using IEEE_TO_HOST
and HOST_TO_IEEE from the IDL Astronomy Library. It has the nifty
benefit converting any standard network-order type, including

integers, into the host-specific endianness. Here is how | use it with
floating point numbers.

bb = bytarr(8) ;; Read ten bytes of data
readu, unit, bb

ff = double(bb, 0) ;; Cast to double, but still with the wrong byte order
ieee_to_host, ff ;; Convert to host byte order
Craig

P.S. You will have to download at least where_negzero.pro
conv_unix_vax.pro as well.

Craig B. Markwardt, Ph.D. EMAIL: craigmnet@cow.physics.wisc.edu
Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response

Subject: Re: 10 bytes real

Page 1 of 11 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12554&goto=22265#msg_22265
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=22265
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Posted by promashkin on Thu, 26 Oct 2000 22:07:42 GMT

View Forum Message <> Reply to Message

Craig Markwardt wrote:

> bb = bytarr(8) ;; Read ten bytes of data
> readu, unit, bb

Sorry, Craig, | am not following you here. How exactly does the above
read 10 bytes into an eight-element array?

| guess I've done enough IDLing for one day. Can't figure a one-liner
out :-(

Pavel

Subject: Re: 10 bytes real
Posted by Craig Markwardt on Thu, 26 Oct 2000 22:40:07 GMT

View Forum Message <> Reply to Message

Pavel Romashkin <promashkin@cmdl.noaa.gov> writes:
> Craig Markwardt wrote:

>

>> pbb =bytarr(8) ;; Read ten bytes of data

>> readu, unit, bb

>
> Sorry, Craig, | am not following you here. How exactly does the above
> read 10 bytes into an eight-element array?

> | guess I've done enough IDLing for one day. Can't figure a one-liner
> out :-(

[Legal eagle mode]

If you look carefully, | only talked about 4- and 8-byte floating
point numbers. | have no idea how to read 10-byte ones. This is an
Intel-ism that IDL doesn't seem to support.

Craig

Craig B. Markwardt, Ph.D. EMAIL: craigmnet@cow.physics.wisc.edu
Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response

Subject: Re: 10 bytes real

Page 2 of 11 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3353
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12554&goto=22262#msg_22262
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=22262
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12554&goto=22261#msg_22261
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=22261
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Posted by Thierry Wannier on Fri, 27 Oct 2000 06:20:32 GMT

View Forum Message <> Reply to Message

Thanks for the idea, but unfortunately it does not solve my problem, since the
data file really contains 10 bytes reals.

| thought that a way to turn around the problem would be to

a) read the ten bytes,

b) reorder them in little-endian (PC type if | recall correctly)

c) read the components of the number (i.e. decompose the real in its
significand and exponent parts (that's how | do understand reals are build

up))
d) recompose a real (double precision: 16 bytes) using this information.

Unfortunately, | am no computer specialist but just a middle range user, and |
have

no idea about the possibilities of doing this decomposition/recomposition of a
real number.

T.

Subject: Re: 10 bytes real
Posted by Karl Schultz on Fri, 27 Oct 2000 15:39:25 GMT

View Forum Message <> Reply to Message

"Thierry Wannier" <thierry.wannier@unifr.ch> wrote in message
news:39F91EBO.7EE5066A@unifr.ch...

> Thanks for the idea, but unfortunately it does not solve my problem, since
the

data file really contains 10 bytes reals.

| thought that a way to turn around the problem would be to

a) read the ten bytes,

b) reorder them in little-endian (PC type if | recall correctly)

c) read the components of the number (i.e. decompose the real in its
significand and exponent parts (that's how | do understand reals are build

up))

V VVVYVYVYV

This is tricky but you *could* do it...

80-bit IEEE floats use a 65 bit signed mantissa and a 15 bit signed
exponent.

64-bit IEEE uses 53 and 11, respectively.

Handling the mantissa is easy - just toss the lower 12 bits.

You'd have to check the exponents before fixing them up because if the
magnitude of the 15 bit exponent is so big that it won't fit into 11 bits,
you've got a number that is too large, and you end up with an effective
overflow. You'd have to watch underflow as well.

| also think that the exponent is stored in "excess" format, meaning that,

Page 3 of 11 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2607
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12554&goto=22256#msg_22256
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=22256
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3264
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12554&goto=22253#msg_22253
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=22253
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

for 11-bit exponents, the exponent is stored as [0..2047] instead of
[-1024..1023]. Check the IEEE specs to be sure. But | think you'd have to:
load the 15-bit exponent, subtract 2*14, clamp to [-1024..1023] and then add
1024.

Also, the 80x87 math processors on wintel machines are 80-bit anyway and |
think that there are instructions that would load 80-bit floats into the

floating point regs. After you've done that, you can read them back out as

a double. 1 don't know if there is any C compiler support. You might be

able to pull some #asm tricks.

Finally, | noticed some hints at 80-bit support for the PowerMac in float.h
that comes with MS C++ for windows. Maybe the Mac C compilers have 80-bit
float support.

> d) recompose a real (double precision: 16 bytes) using this information.
>

> Unfortunately, | am no computer specialist but just a middle range user,
and |

> have

> no idea about the possibilities of doing this decomposition/recomposition
of a

> real number.

>

> T.

>

Subject: Re: 10 bytes real
Posted by davidf on Fri, 27 Oct 2000 16:08:42 GMT

View Forum Message <> Reply to Message

Karl Schultz (kschultz@researchsystems.com) writes:

> This is tricky but you *could* do it...

| just remembered the reason | didn't go into computer science. :-(
Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting

Phone: 970-221-0438 E-Mail: davidf@dfanning.com

Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12554&goto=22252#msg_22252
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=22252
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: 10 bytes real
Posted by Craig Markwardt on Fri, 27 Oct 2000 16:39:01 GMT

View Forum Message <> Reply to Message

Thierry Wannier <thierry.wannier@unifr.ch> writes:

Thanks for the idea, but unfortunately it does not solve my problem, since the
data file really contains 10 bytes reals.

| thought that a way to turn around the problem would be to

a) read the ten bytes,

b) reorder them in little-endian (PC type if | recall correctly)

c) read the components of the number (i.e. decompose the real in its
significand and exponent parts (that's how | do understand reals are build

up))
d) recompose a real (double precision: 16 bytes) using this information.

Unfortunately, | am no computer specialist but just a middle range user, and |
have

no idea about the possibilities of doing this decomposition/recomposition of a
real number.

VVVVVVVYVVYVYVYVYVYV

If you can do the research and find the specs on Intel 10-bit reals,
we can probably figures something out.

| found the following bit ranges:

float double 80-bit
sign 31 63 79
exponent 23-30 52-62 56-78
mantissa 0-22 0-51 0-55

It seems 10-byte format supports a *really* large exponent. That's
pretty wierd. You have it tough because 10-bytes is not an even
multiple of any of the IDL types. Thus you will need to insert your
10xN array into a 16xN array and then convert to ULONG64. Then the
bit twizzling comes. Here ISHFT and AND will be your friends.

Craig

Craig B. Markwardt, Ph.D. EMAIL: craigmnet@cow.physics.wisc.edu
Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response

Subject: Re: 10 bytes real

Page 5 of 11 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12554&goto=22251#msg_22251
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=22251
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Posted by Ed Santiago on Mon, 30 Oct 2000 13:39:23 GMT

View Forum Message <> Reply to Message

Enclosed below is an IDL function | wrote earlier this year. It parses
16-byte FLOATS, used on some legacy VAX code whose results | needed to
work with.

It doesn't do over/underflow checks (I "know" what the data should look
like, and so didn't feel like taking the time to do it right).

My code also deals with ULONGS for input. You'll need to change that
to UINTs, and change all the bitmasks.

In short, this doesn't solve your problem, but it might be a start.

G'luck,

E

snip 00 00 00 00 00
------------- A T E e A
+

: NAME:

; PARSE_REAL16

; IDENT:
; $Id: parse_reall6.pro,v 1.1 2000/04/26 14:51:16 esm Exp $

; PURPOSE:
;. Convert (VAX Fortran) REAL16 (16-byte floats) to float or double

; AUTHOR:
; Ed Santiago

; CALLING SEQUENCE:
; float = parse_reall6(reall6)

. INPUTS:
. reall6 4xn array of ULONGs.

; OUTPUTS:
; float array of length n, with machine-readable IEEE floats/doubles

; KEYWORDS:
; IDOUBLE convert to 8-byte (64-bit) double-precision IEEE T_float

; SIDE EFFECTS:

; EXAMPLE:

Page 6 of 11 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3408
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12554&goto=22238#msg_22238
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=22238
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; ACKNOWLEDGMENTS:

. The author wishes to acknowledge Evan Noveroske for patiently
: describing VAX Fortran and filesystem stuff, figuring out the

; "record" stuff in VAX files and how to read them in UNIX,

; generating sample data files, finding documentation on the

; internal representation of REAL*16, and most especially

; for his kindness and promptness in providing this help!

FUNCTION parse_reall6, reall6, double=double, to=to
On_Error, 2

; Parse the keywords.
IF N_Elements(to) EQ O THENto =4
IF Keyword_Set(double) THEN to = 8

IF to NE 4 AND to NE 8 THEN MESSAGE, 'Can only convert to 4 or 8 bytes'

; Input argument MUST be a 4xn array of ULONGs. Anything else, and we die
IF size(reall6, /TName) NE 'ULONG' THEN $

MESSAGE, 'Input argument must be of type ULONG'
IF (size(reall6))[1] NE 4 THEN $

MESSAGE, 'Input argument must be a 4xN array'

; Okay, here we go.

; For more details on binary representations, see

; http://www.digital.com/fortran/docs/vms-um/dfum020.htm

; REAL16 is a 128-bit quantity, defined as follows:

;31 24 23 16 15 87 0

D e S S o e +
v S| exponent | mantissa |

I T R S S +
v mantissa |
A —— +
v mantissa |
R —— +
v mantissa |
S S —— +

: where

Page 7 of 11 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; SIGN, as always, is the single highest bit. 0 = positive, 1 = neg
; EXPONENT is an "excess 16384" exponent, more on that later.

; MANTISSA is the fractional part, with the "redundant most significant
; fraction bit not represented”. What that means is that,

; since the first bit is always going to be 1, it isn't

; included. That's irrelevant for our purposes.

; Thus our job here is to extract the sign, exponent, and mantissa,
; and scrunch into 32 bits.

sign =reall6[3,*] AND '80000000'XL

exponent = reall6[3,*] AND '7FFF0000"XL

mantissa = real16[3,*] AND '0000FFFF'XL

 IEEE S_float (REAL*4) format is a 32-bit representation of a float:

;31 23 22 16 15 87 0
: e S —— S R S +
7 |S| exponent | mantissa |

S ER— e — +

; Note that we have 8 bits of exponent, instead of 15. Thus, instead
; of excess-16384 (2714), we have to use excess-127 (2°7).

; Note also that we have 23 bits of mantissa. Since we only get 16
; by masking off the top word of the REAL16, we'll need to shift that
; left and add some more bits from the next word.

; Finally, NOTE CAREFULLY that the exponent doesn't live on a nybble
; boundary! The actual bits used are 0x7F800000 !

; IEEE T_float (double, or REAL*8) is a 64-bit representation:

;31 2019 1615 87 0

I e R S S — o o mmmeee +
7 |S|] exponent | mantissa |

R R — e — +
v mantissa |
T —— +

; Here we have 11 bits of exponent, 20 of mantissa.

IF to EQ 8 THEN BEGIN
excess =1023
shift_exp = 20

Page 8 of 11 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

ENDIF ELSE BEGIN
excess =127
shift_exp = 23

ENDELSE

; Convert exponent from excess-16384 to excess-127 or -1024
exponent = ishft(exponent, -16)

tmp = where(exponent NE 0, c)

IF ¢ NE O THEN exponent[tmp] = exponent[tmp] - 16383 + excess
exponent = ishft(exponent, shift_exp)

; Add more bits to our mantissa
IF to EQ 8 THEN BEGIN

mantissa = ishft(mantissa, 4) + (ishft(real16[2,*], -28) AND 'OF'XL)
ENDIF ELSE BEGIN

mantissa = ishft(mantissa, 7) + (ishft(real16[2,*], -25) AND '7F'XL)
ENDELSE

new_ul = sign + exponent + mantissa

IF to EQ 8 THEN BEGIN
new_ul = ishft(ULong64(temporary(new_ul)), 32)
new_ul = new_ul + (ishft(real16[2,*], 4) AND 'FFFFFFFOQO'XL)
new_ul = new_ul + (ishft(real16[1,*], -28) AND '0000000F'XL)

RETURN, double(temporary(new_ul), 0, N_Elements(sign))
ENDIF ELSE BEGIN
RETURN, float(temporary(new_ul), 0, N_Elements(sign))
ENDELSE
END

Eduardo Santiago Software Type esm@lanl.gov RKBA!

Subject: Re: 10 bytes real
Posted by Peter Mason on Mon, 30 Oct 2000 21:46:30 GMT

View Forum Message <> Reply to Message

"Karl Schultz" <kschultz@researchsystems.com> wrote:

>

Also, the 80x87 math processors on wintel machines are 80-bit anyway
and | think that there are instructions that would load 80-bit floats

into the floating point regs. After you've done that, you can read

them back out as a double. | don't know if there is any C compiler
support.

VVVVVA

Page 9 of 11 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1501
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12554&goto=22230#msg_22230
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=22230
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

<...>

Apparently the MS visual C compiler knows about "long doubles" - 80-bit
IEEE floating point numbers.

Provided that your 10-byte numbers are indeed IEEE FP format, you
should be able to use the following routine (compiled etc) to do the
conversion. On the input side | gues you'd just use a BYTARR or
something, stuffed with the inscrutable 10-byte reals, and for the
output you'd present a DOUBLE array of the right size - hopefully it
will get filled with something useful :-)

| haven't tested the routine below. (In fact I've never used a "long
double” before.) But give it atry.

If you don't have a MS visual C compiler, let me know and | will
compile the routine for you.

Cheers
Peter Mason

/*

10-byte to 8-byte IEEE floating-point converter (untested).
Peter Mason, CSIRO DEM, October 2000

*/

#define STRICT

#define VC_EXTRALEAN

#include <windows.h>

/*** *kkkkkkkkkkk

******/

BOOL WINAPI DIIMain(HINSTANCE hinst, unsigned long reason, void *resvd)
{

hinst=hinst; reason=reason; resvd=resvd;

return 1;

}

/*** **********/
/*
This is it.
The call is:
status=call_external('[pathfconv.dll','idIfp10to8',in10,0ut8 ,n)
. in10[n] is an array of 10-byte IEEE floating-point numbers;
. out8[n] is an array that will be filled with the conversions;
. nis the number of numbers (in all its splendour?)
*/
int WINAPI idlfp10to8(int ac, int *a[])
{
register long double *in10;
register double *out8;
register int n;

Page 10 of 11 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

if(ac!=3) return 1; //incorrect number of arguments
in10 = (long double *)a[0];

out8 = (double *)a[1];

n = *af2];

for(; n; --n, ++in10, ++out8) *out8 = (double)(*in10);
return O;

}

/*** **********/

Sent via Deja.com http://www.deja.com/
Before you buy.

Page 11 of 11 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

