
Subject: Re: MESH_DECIMATE anyone?
Posted by Karl Schultz on Fri, 03 Nov 2000 08:00:00 GMT
View Forum Message <> Reply to Message

"Andrew" <noymer@my-deja.com> wrote in message
news:8tu10c$tb5$1@nnrp1.deja.com...
> Dear C.l.i-p,
>
> I have a problem, and I *think* that MESH_DECIMATE may be
> my solution, but I'm a little confused. This function was
> introduced in IDL 5.3, which is also the version I am using.

MESH_DECIMATE is intended to simplify polygonal meshes by merging small
polygons into larger ones. Rather than using simple resampling or naive
combining, MESH_DECIMATE carefully picks the polygons it merges so that the
new simplfied mesh is as close to the original as possible. It tends to
combine polygons in "flat" areas and keep polygons in places where the mesh
is rapidly changing.

> Here is the deal: I have a huge matrix of simulated data
> in three dimensions. It's big enough that 3D wireframes are
> too dense (like solid black), and need to be thinned out. One
> solution is to sample the data. This has several appealing
> aspects. The data in this case are regularly-gridded so the
> mechanics of sampling are simple. And since I am simulating
> the data anyway, I could actually just program the thing to output
> less data but to output the correct average of n points, which is
> even better than just sampling.

Yes, but decimation should do a better job.

> But before I do that, I thought I would take MESH_DECIMATE
> out for a spin. But I have become confused (what else is new?)
> if this is really the function I want. My data are a rectangular
> array of z-values, which I plot using the SURFACE procedure (DG).
> The data start of as a list of (x,y,z) triplets, R*C long. Following
> advice I got about a year ago from this newsgroup, I convert the
> data into three separate R*C arrays using the REFORM function.
> The z array is the actual data, and the x and y arrays make sure
> the axes are labeled correctly. All I want to do is thin out the
> z array and make a new, less dense, surface out of it.

This sounds like an excellent application for decimation. Height fields or
anything else that you might be tempted to plot with SURFACE might work
well. But read on.

> The syntax of MESH_DECIMATE is:
> Result = MESH_DECIMATE (Verts, Conn, Connout [, /VERTICES]

Page 1 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3264
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12578&goto=22283#msg_22283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=22283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> [, PERCENT_VERTICES=percent | , PERCENT_POLYGONS=percent])
>
> where:
> Verts=Input array of polygonal vertices [3, n].
> Conn=Input polygonal mesh connectivity array.
> Connout=Output polygonal mesh connectivity array.
>
> Now, Conn is going to be my z-data (???), and Connout will be the
> decimated surface. I'm quite confused about Verts. My vertices
> are just my simulated data points, so for should I feed to Verts
> my original list of (X,Y,Z) triplets??? I'm having trouble
> visualizing this. Even if I can get a nicely-thinned-out z-array,
> what happens to my x and y arrays?

MESH_DECIMATE expects a polygonal mesh for input. A polygonal mesh is, in
general, a list of vertices (XYZ triplets) and a connectivity list that
describes how these vertices are connected. See the discussions of polygon
formats that are used by the IDLgrPolygon object in Object Graphics.

If you start out with a rectangular array of Z values, here is what you have
to do:

1) Generate the implicit X and Y coords. Looks like you already know how to
do this.
2) Get the X, Y and Z into a (3,n) array. This is the verts argument for
input to MESH_DECIMATE.
3) The next step is a bit harder. You have to create a "polygon list". It
sounds like you don't have any explicit connectivity info at the start of
all this, so you can go ahead and make your own mesh. If the data is
regularly gridded, it makes sense to make the mesh out of little squares.
For example, if you have a 10x10 surface, then the verts can be stored in
the verts array as a (3,100) array. If you keep the vertices ordered
carefully in this array, the first polygon in the list would be represented
as [4, 0, 1, 11, 10]. This would be the first 5 elements of your conn
array. You will end up with 9x9 squares for a total of 9x9x5 entires in
your conn array. You could also create triangles [3,0,1,10,3,1,11,10,....],
but that's a bit more work and MESH_DECIMATE chops it up into triangles
anyway.

So now you have your verts and conn arguments for MESH_DECIMATE. Pick a
percentage. For example, 20 means that the decimated mesh will have 20% of
the vertices (or polygons) of the original mesh.

MESH_DECIMATE returns a new connectivity list that refers to the vertices in
the original vertex list. The new conn array defines polygons that use a
subset of the original vertex list. You could use MESH_VALIDATE to get rid
of the unused vertices, but sometimes it is convenient to just keep one
vertex list and have a few conn lists for each level of detail that you

Page 2 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

might want. Or, you may need to keep the original vertex list anyway, so
there is no point in keeping a subset list around.

The /VERTICES keyword (actually a doc error - should be VERTICES=out_verts)
instructs MESH_DECIMATE to move the input vertices around in order to
optimize the mesh and return the new vertex list in out_verts. This allows
the meshes to be slightly better (closer to the original).

>
> Usually I test things on small datasets before I do it on a big
> dataset---but how do I decimate a 3x3 array? :-0

In this case, larger tests are a bit better, to see the effects of
decimation.

I suggest looking at the decimate.pro example shipped with IDL in the
examples directory. Just type "decimate" at the IDL command line to run the
example. In IDL 5.3, there is a cow model that you can interactively
decimate. In 5.4 we changed this model to a height field (Maroon Bells -
mountains). In both cases, you can play with the decimation percentage and
watch how the mesh changes. In the 5.4 version, there is code that reads Z
data and makes the polygon list, as I described above:

 dim = 64
 heightField = BYTARR(dim*dim, /NOZERO)
 OPENR, lun, /GET_LUN, filename, ERROR=err
 IF (err NE 0) THEN BEGIN
 PRINTF, -2, !ERR_STRING
 RETURN
 ENDIF
 READU, lun, heightField
 CLOSE, lun
 FREE_LUN, lun

 ; Generate 2D grid for X and Y.
 ; Fill in Z with height data.
 coords = (FINDGEN(dim)/(dim-1)) # REPLICATE(1, dim)
 verts = FLTARR(3, dim*dim)
 verts[0,*] = REFORM(coords, dim*dim)
 verts[1,*] = REFORM(TRANSPOSE(coords), dim*dim)
 verts[2,*] = FLOAT(heightField) / (1.5 * MAX(heightField))

 ; generate quad mesh connectivity list
 i = 0L
 faces = LONARR(5 * (dim-1) * (dim-1))
 FOR y = 0, dim-2 DO BEGIN
 FOR x = 0, dim-2 DO BEGIN
 basevert = y * dim + x

Page 3 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 faces[i] = [4,basevert, basevert+1, basevert+dim+1, basevert+dim]
 i = i + 5
 ENDFOR
 ENDFOR

The rest of decimate.pro should also give you some more ideas on using
MESH_DECIMATE.

> Beore I just go back to sampling the data, I'd be grateful if
> someone out there who has become an expert in MESH_DECIMATE could
> point me in the right direction. For regularly gridded data, I'm
> beginning to think that MESH_DECIMATE may be overkill---but I'd be
> interested to learn if this is incorrect.

Hope this helps. I have a white paper about polygonal meshes in IDL that
I'll send to you if you can let me know where to send it.

Karl
RSI

Subject: MESH_DECIMATE anyone?
Posted by noymer on Fri, 03 Nov 2000 09:37:16 GMT
View Forum Message <> Reply to Message

Dear C.l.i-p,

 I have a problem, and I *think* that MESH_DECIMATE may be
my solution, but I'm a little confused. This function was
introduced in IDL 5.3, which is also the version I am using.

 Here is the deal: I have a huge matrix of simulated data
in three dimensions. It's big enough that 3D wireframes are
too dense (like solid black), and need to be thinned out. One
solution is to sample the data. This has several appealing
aspects. The data in this case are regularly-gridded so the
mechanics of sampling are simple. And since I am simulating
the data anyway, I could actually just program the thing to output
less data but to output the correct average of n points, which is
even better than just sampling.

 But before I do that, I thought I would take MESH_DECIMATE
out for a spin. But I have become confused (what else is new?)
if this is really the function I want. My data are a rectangular
array of z-values, which I plot using the SURFACE procedure (DG).
The data start of as a list of (x,y,z) triplets, R*C long. Following
advice I got about a year ago from this newsgroup, I convert the

Page 4 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3092
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12578&goto=22279#msg_22279
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=22279
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

data into three separate R*C arrays using the REFORM function.
The z array is the actual data, and the x and y arrays make sure
the axes are labeled correctly. All I want to do is thin out the
z array and make a new, less dense, surface out of it.

 The syntax of MESH_DECIMATE is:
Result = MESH_DECIMATE (Verts, Conn, Connout [, /VERTICES]
[, PERCENT_VERTICES=percent | , PERCENT_POLYGONS=percent])

where:
Verts=Input array of polygonal vertices [3, n].
Conn=Input polygonal mesh connectivity array.
Connout=Output polygonal mesh connectivity array.

Now, Conn is going to be my z-data (???), and Connout will be the
decimated surface. I'm quite confused about Verts. My vertices
are just my simulated data points, so for should I feed to Verts
my original list of (X,Y,Z) triplets??? I'm having trouble
visualizing this. Even if I can get a nicely-thinned-out z-array,
what happens to my x and y arrays?

Usually I test things on small datasets before I do it on a big
dataset---but how do I decimate a 3x3 array? :-0

Beore I just go back to sampling the data, I'd be grateful if
someone out there who has become an expert in MESH_DECIMATE could
point me in the right direction. For regularly gridded data, I'm
beginning to think that MESH_DECIMATE may be overkill---but I'd be
interested to learn if this is incorrect.

TIA,
 Andrew

--
Andrew

Sent via Deja.com http://www.deja.com/
Before you buy.

Subject: Re: MESH_DECIMATE
Posted by Karl Schultz on Thu, 28 Mar 2002 01:02:29 GMT
View Forum Message <> Reply to Message

"Reimar Bauer" <r.bauer@fz-juelich.de> wrote in message
news:3CA21E59.1A63F0F6@fz-juelich.de...
> Hi,

Page 5 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3264
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12578&goto=30011#msg_30011
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=30011
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> did I miss something I like to use a function like mesh_decimate
> but for vectors and not only for 3D Arrays.
>
> Did someone have already such a routines.
>
> Reimar
>

I'm not really sure what you are asking for, but the rest of this posting
assumes that you want to decimate polylines, as opposed to polygons.

MESH_DECIMATE is good for decimating things like regularly sampled height
fields. The decimator removes vertices that are not as important as others
in describing the height field. It will remove vertices in flat areas, for
example. See the DECIMATE example that ships with IDL.

The trouble is, there's no real easy way to do the same thing with
polylines. Suppose that you had a highly detailed polyline (lots of
vertices) that describes a coastline. You may want to simplify the line by
reducing the number of vertices at the expense of some unwanted detail.
There are various algorithms and approaches for the problem, but I don't
think there's anything to directly do this in IDL.

So, here's one of the tackiest things I've ever done with IDL. You can
convert your polyline into a polygon extrusion, decimate that, and then take
a border of your remaining extrusion as your decimated polyline. It is
overkill, but is pretty cool nonetheless. Enjoy.

Karl

PRO coastline

 filename = FILEPATH('states2.sav',
SUBDIRECTORY=['examples','demo','demodata'])
 RESTORE, filename

 ; pick a state and get its outline data
 n = 57
 PRINT, "State is ", states[n].state
 outline = *states[n].poutline
 ; free stuff we do not need
 PTR_FREE, states.poutline

 ; build vertex array of outline, plus another copy of the outline
stacked on top in Z
 nPoints = N_ELEMENTS(outline[0,*])
 pts = FLTARR(3,nPoints*2)

Page 6 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 pts[0,0:nPoints-1] = outline[0,0:nPoints-1]
 pts[1,0:nPoints-1] = outline[1,0:nPoints-1]
 pts[2,0:nPoints-1] = 0
 pts[0,nPoints:2*nPoints-1] = outline[0,0:nPoints-1]
 pts[1,nPoints:2*nPoints-1] = outline[1,0:nPoints-1]
 pts[2,nPoints:2*nPoints-1] = 10

 ; build connectivity array to make quads between the two outlines.
 ; this will look like an extrusion of the outline
 conn = LONARR(5 * nPoints)
 conn[LINDGEN(nPoints)*5] = 4
 conn[LINDGEN(nPoints)*5+1] = LINDGEN(nPoints)
 conn[LINDGEN(nPoints)*5+2] = LINDGEN(nPoints) + 1
 conn[LINDGEN(nPoints)*5+3] = LINDGEN(nPoints) + nPoints + 1
 conn[LINDGEN(nPoints)*5+4] = LINDGEN(nPoints) + nPoints
 conn[5 * nPoints - 3] = nPoints
 conn[5 * nPoints - 2] = 0

 ; look at the original extrusion
 oPolygon1 = OBJ_NEW('IDLgrPolygon', pts, POLYGON=conn, COLOR=[255,0,0])
 xobjview, oPolygon1

 ; decimate and look at the decimated extrusion
 n = MESH_DECIMATE(pts, conn, new_conn, PERCENT_VERTICES=50)
 oPolygon2 = OBJ_NEW('IDLgrPolygon', pts, POLYGON=new_conn,
COLOR=[0,255,0])
 xobjview, oPolygon2

 ; Now pull out the vertices that remain after the decimation

 ; First, filter out the 3's from the conn list
 ; Replace the 3's with a "big" value that we'll filter out later
 i = LINDGEN(N_ELEMENTS(new_conn)/4)*4
 line_conn = new_conn
 line_conn[i] = nPoints

 ; Now keep only the vert indicies from the decimated list that are
 ; smaller than nPoints. This gets rid of all the verts from the top
 ; of the extruded outline.
 i = WHERE(line_conn LT nPoints)
 line_conn = line_conn[i]

 ; Now sort and uniq the list, so that we only get one of each vertex,
 ; and in the right order.
 ; Otherwise, we'd have duplicate verts introduced by the triangles.
 line_conn = line_conn[UNIQ(line_conn, SORT(line_conn))]

 PRINT, nPoints, ' points in the original (red) outline.'

Page 7 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 PRINT, N_ELEMENTS(line_conn), ' points in the decimated (green)
outline.'

 oPolyline1 = OBJ_NEW('IDLgrPolyline', pts[*, 0:nPoints-1],
COLOR=[255,0,0])
 oPolyline2 = OBJ_NEW('IDLgrPolyline', pts[*,line_conn], COLOR=[0,255,0])
 xobjview, [oPolyline1, oPolyline2], /BLOCK
 OBJ_DESTROY, [oPolygon1, oPolygon2, oPolyline1, oPolyline2]
END

Subject: Re: MESH_DECIMATE
Posted by R.Bauer on Thu, 28 Mar 2002 08:25:07 GMT
View Forum Message <> Reply to Message

Karl Schultz wrote:
>
> "Reimar Bauer" <r.bauer@fz-juelich.de> wrote in message
> news:3CA21E59.1A63F0F6@fz-juelich.de...
>> Hi,
>>
>> did I miss something I like to use a function like mesh_decimate
>> but for vectors and not only for 3D Arrays.
>>
>> Did someone have already such a routines.
>>
>> Reimar
>>
>
> I'm not really sure what you are asking for, but the rest of this posting
> assumes that you want to decimate polylines, as opposed to polygons.
>
> MESH_DECIMATE is good for decimating things like regularly sampled height
> fields. The decimator removes vertices that are not as important as others
> in describing the height field. It will remove vertices in flat areas, for
> example. See the DECIMATE example that ships with IDL.
>
> The trouble is, there's no real easy way to do the same thing with
> polylines. Suppose that you had a highly detailed polyline (lots of
> vertices) that describes a coastline. You may want to simplify the line by
> reducing the number of vertices at the expense of some unwanted detail.
> There are various algorithms and approaches for the problem, but I don't
> think there's anything to directly do this in IDL.
>
> So, here's one of the tackiest things I've ever done with IDL. You can
> convert your polyline into a polygon extrusion, decimate that, and then take
> a border of your remaining extrusion as your decimated polyline. It is
> overkill, but is pretty cool nonetheless. Enjoy.

Page 8 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2825
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=12578&goto=30003#msg_30003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=30003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> Karl
>

Dear Karl,

what you described is what I like to have. The example is quite good.

thanks

Reimar

--
Reimar Bauer

Institut fuer Stratosphaerische Chemie (ICG-I)
Forschungszentrum Juelich
email: R.Bauer@fz-juelich.de
 -- -------
 a IDL library at ForschungsZentrum Juelich
 http://www.fz-juelich.de/icg/icg1/idl_icglib/idl_lib_intro.h tml
 == =======

Page 9 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

