Subject: Re: More fun

Posted by davidf on Mon, 20 Nov 2000 08:00:00 GMT

View Forum Message <> Reply to Message

Martin Schultz (martin.schultz@dkrz.de) writes:

> But I am sure there is a way to do this with histogram ;-)

I misplaced my copy of "101 Weekend Projects with the Histogram Function" at the last IDL EPA meeting. Has anyone seen it. :-(

Cheers.

David

--

David Fanning, Ph.D.

Fanning Software Consulting

Phone: 970-221-0438 E-Mail: davidf@dfanning.com

Coyote's Guide to IDL Programming: http://www.dfanning.com/

Toll-Free IDL Book Orders: 1-888-461-0155

Subject: Re: More fun

Posted by Jaco van Gorkom on Mon, 20 Nov 2000 08:00:00 GMT

View Forum Message <> Reply to Message

How about:

```
nv = n_elements(v)/interv
result = 0.5 * rebin(v+shift(v, -interv+1), nv, /sample)
cheers,
Jaco
```

"Martin Schultz" <martin.schultz@dkrz.de> wrote in message news:3A1969E0.175876A8@dkrz.de...

> "J.D. Smith" wrote:

>>

- >> Here's one I just came up against. Suppose you want to rebin a vector
- >> to some smaller size, an integer factor smaller. E.g. 100 elements to
- >> 20 elements. Now, rather than the average of those elements in each
- >> interval, etc., you want merely the average of the first and last member
- >> of that interval. E.g., you want:

>>

>> [(v[0]+v[4])/2, (v[5]+v[9])/2, (v[10]+v[14])/2, ...]

>>

```
>> Rebin by itself can't work, I don't think.
>>
>> Takers?
>> JD
>>
>> P.S. No for loops please. Bonus points if you don't build an explicit
>> index list.
>>
>> --
>> J.D. Smith
                      WORK: (607) 255-6263
>> Cornell Dept. of Astronomy |
                                 (607) 255-5842
>> 304 Space Sciences Bldg. | FAX: (607) 255-5875
   Ithaca, NY 14853
>
 Missing the bonus, I would suggest
 nv=N Elements(v)/5
  res=0.5*(v[lindgen(nv)*5] + v[lindgen(nv)*5+4])
 But I am sure there is a way to do this with histogram ;-)
>
> Cheers.
 Martin
>
  [ Dr. Martin Schultz Max-Planck-Institut fuer Meteorologie
>
               Bundesstr. 55, 20146 Hamburg
                                                 \prod
               phone: +49 40 41173-308
> [[
                                               [[
               fax: +49 40 41173-298
                                             [[
> [[ martin.schultz@dkrz.de
                                             \prod
```

Subject: Re: More fun

Posted by thompson on Mon, 20 Nov 2000 08:00:00 GMT

View Forum Message <> Reply to Message

"J.D. Smith" <jdsmith@astro.cornell.edu> writes:

> Here's one I just came up against. Suppose you want to rebin a vector

> to some smaller size, an integer factor smaller. E.g. 100 elements to

> 20 elements. Now, rather than the average of those elements in each

> interval, etc., you want merely the average of the first and last member

> of that interval. E.g., you want:

- > [(v[0]+v[4])/2, (v[5]+v[9])/2, (v[10]+v[14])/2, ...]
- > Rebin by itself can't work, I don't think.
- > Takers?
- > JD
- > P.S. No for loops please. Bonus points if you don't build an explicit > index list.

If the number of elements in the array is evenly divisible by the rebin factor (such as 100 is evenly divisible by 5), then the following should work

TEMP = REFORM(ARRAY, M, N_ELEMENTS(ARRAY)/M) RESULT = REFORM(TEMP(0,*) + TEMP(M-1,*)) / 2.

William Thompson

Subject: Re: More fun
Posted by Martin Schultz on Mon, 20 Nov 2000 08:00:00 GMT
View Forum Message <> Reply to Message

```
"J.D. Smith" wrote:
>
> Here's one I just came up against. Suppose you want to rebin a vector
> to some smaller size, an integer factor smaller. E.g. 100 elements to
> 20 elements. Now, rather than the average of those elements in each
> interval, etc., you want merely the average of the first and last member
> of that interval. E.g., you want:
> [(v+v)/2, (v+v)/2, (v+v)/2, ...]
 Rebin by itself can't work, I don't think.
>
 Takers?
> JD
> P.S. No for loops please. Bonus points if you don't build an explicit
> index list.
> J.D. Smith
                        | WORK: (607) 255-6263
> Cornell Dept. of Astronomy |
                                    (607) 255-5842
> 304 Space Sciences Bldg. | FAX: (607) 255-5875
```

```
Missing the bonus, I would suggest
nv=N_Elements(v)/5
res=0.5*( v[lindgen(nv)*5] + v[lindgen(nv)*5+4] )
But I am sure there is a way to do this with histogram ;-)
Cheers,
Martin
[[ Dr. Martin Schultz Max-Planck-Institut fuer Meteorologie
            Bundesstr. 55, 20146 Hamburg
[[
            phone: +49 40 41173-308
                                         [[
           fax: +49 40 41173-298
                                       [[
[[ martin.schultz@dkrz.de
                                        [[
```

> Ithaca, NY 14853