
Subject: Re: User selectable lower array bound?
Posted by Jeff Guerber on Fri, 03 Aug 2001 00:39:50 GMT
View Forum Message <> Reply to Message

On Thu, 2 Aug 2001, Paul van Delst wrote:

> Is is just me, or would anyone else find useful the ability to define
> arrays in IDL such that the lower bound is *not* always zero? Sorta
> like:
>
> x = FINDGEN(11, LOWER = -5)
> or
> y = DBLARR(100, LOWER = 1)
>
> so that accessing elements such as x[-4] or y[100] are o.k.? [...]

 Here, here!! This was #1 on my (13-item) contribution to last summer's
"Top 10 IDL Requests" discussion. As I pointed out then, Fortran's had
this capability for decades. (And IDL is expressly a data-analysis
language, like Fortran, not a systems-programming language like C.) The
biggest problem I see is that certain IDL intrinsics, like WHERE(), return
-1 to indicate an invalid index. Perhaps WHERE could return
(lowerbound-1) instead, on the presumption that existing programs would be
using 0-based arrays? Of course it's much better to check the COUNT=
keyword anyway. (This would also be a good application for some sort of
"undefined value" type.)

 (IMHO, the two worst features IDL picked up from (presumably) C are
starting arrays at 0 (which makes some sense in C, due to the tight
coupling of arrays and pointers, but this isn't the case in IDL), and
prefix syntax for the array dereferencing operator. Concerning the
latter, I've since learned that even Dennis Ritchie apparently now thinks
it was a mistake; from his "The Development of the C Language"
(http://cm.bell-labs.com/who/dmr/chist.pdf), page 12:

 An accident of syntax contributed to the perceived complexity of
 the language. The indirection operator, spelled * in C, is
 syntactically a unary prefix operator, just as in BCPL and B [C's
 predecessor languages]. ... Sethi [Sethi 81] observed that many of
 the nested declarations and expressions would become simpler if the
 indirection operator had been taken as a postfix operator instead
 of prefix, but by then it was too late to change.

 Oh, make that THREE worst features: Also the use of integers for
Boolean data, instead of having a true logical or Boolean data type.
VERY confusing.)

 Of course, these opinions are my own and don't reflect those of

Page 1 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3604
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14006&goto=25979#msg_25979
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=25979
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Raytheon or NASA.

 Jeff Guerber
 Raytheon ITSS
 NASA Goddard Space Flt Ctr
 Oceans & Ice Branch (971)

Subject: Re: User selectable lower array bound?
Posted by bennetsc on Fri, 03 Aug 2001 00:52:37 GMT
View Forum Message <> Reply to Message

In article <3B69CA57.FD3B1D8D@noaa.gov>,
Paul van Delst <paul.vandelst@noaa.gov> wrote:
> Hey there,
>
> Is is just me, or would anyone else find useful the ability to
> define arrays in IDL such
> that the lower bound is *not* always zero? Sorta like:
>
> x = FINDGEN(11, LOWER = -5)
> or
> y = DBLARR(100, LOWER = 1)
>
> so that accessing elements such as x[-4] or y[100] are o.k.?

 Yes, that would make a lot of code much more understandable
and less prone to errors during development.
>
> I know this can be done now with judicious use of proxy indices, e.g.
>
> FOR i = -5, 5 DO BEGIN
> ix = i + 5
> PRINT, x[ix]
> do other stuff with negative i's....
> ENDFOR
>
> but sometimes this makes code hard to follow (or explain to
> someone who's never used the
> code before) in direct correspondence with a physical process.
>
> It seems like such a simple thing to be able to do (with default
> action being start at
> index 0) although I'm sure the amount of work required to
> implement this would be
> horrendous. Still, it shur would be nice.....
>
 That depends upon how IDL already keeps track of arrays

Page 2 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2486
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14006&goto=25978#msg_25978
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=25978
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

internally. In PL/1, for example, one declared an array with the
boundaries for each dimension in the form lowerbound:upperbound,
where specification of the lower bound and the colon were optional.
If only the upper bound were specified, then the lower bound defaulted
to 1. In its internal representation of arrays, IIRC, PL/1 kept
the lower and upper boundaries of each dimension as part of a control
block preceding the actual array memory. If a language implementation
doesn't already store both boundaries, or equivalently, the lower
boundary and number of elements, for each dimension, then yes, adding
such support might well be a major headache.

 Scott Bennett, Comm. ASMELG, CFIAG
 College of Oceanic and Atmospheric
					Sciences
 Oregon State University
 Corvallis, Oregon 97331
 ** **********
* Internet: sbennett at oce.orst.edu *
 --- ---------
* "Lay then the axe to the root, and teach governments humanity. *
* It is their sanguinary punishments which corrupt mankind." *
* -- _The_Rights_of_Man_ by Tom Paine (1791.) *
 ** **********

Subject: Re: User selectable lower array bound?
Posted by Paul van Delst on Fri, 03 Aug 2001 14:08:24 GMT
View Forum Message <> Reply to Message

Jeff Guerber wrote:
>
> On Thu, 2 Aug 2001, Paul van Delst wrote:
>
>> Is is just me, or would anyone else find useful the ability to define
>> arrays in IDL such that the lower bound is *not* always zero? Sorta
>> like:
>>
>> x = FINDGEN(11, LOWER = -5)
>> or
>> y = DBLARR(100, LOWER = 1)
>>
>> so that accessing elements such as x[-4] or y[100] are o.k.? [...]
>
> Here, here!! This was #1 on my (13-item) contribution to last summer's
> "Top 10 IDL Requests" discussion. As I pointed out then, Fortran's had
> this capability for decades. (And IDL is expressly a data-analysis
> language, like Fortran, not a systems-programming language like C.) The

Page 3 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1954
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14006&goto=26118#msg_26118
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26118
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> biggest problem I see is that certain IDL intrinsics, like WHERE(), return
> -1 to indicate an invalid index. Perhaps WHERE could return
> (lowerbound-1) instead, on the presumption that existing programs would be
> using 0-based arrays? Of course it's much better to check the COUNT=
> keyword anyway. (This would also be a good application for some sort of
> "undefined value" type.)

Well, maybe WHERE could work as it does now, but for cases where the start index is not
zero, a function like the Fortran 90 intrinsic LBOUND() could be used.

BTW, I never check the WHERE result either, always the COUNT value.

paulv

--
Paul van Delst A little learning is a dangerous thing;
CIMSS @ NOAA/NCEP Drink deep, or taste not the Pierian spring;
Ph: (301)763-8000 x7274 There shallow draughts intoxicate the brain,
Fax:(301)763-8545 And drinking largely sobers us again.
 Alexander Pope.

Subject: Re: User selectable lower array bound?
Posted by Paul van Delst on Fri, 03 Aug 2001 14:36:33 GMT
View Forum Message <> Reply to Message

bennetsc@NOSPAMucs.orst.edu wrote:
>
> In article <3B69CA57.FD3B1D8D@noaa.gov>,
> Paul van Delst <paul.vandelst@noaa.gov> wrote:
>> Hey there,
>>
>> Is is just me, or would anyone else find useful the ability to
>> define arrays in IDL such
>> that the lower bound is *not* always zero? Sorta like:
>>
>> x = FINDGEN(11, LOWER = -5)
>> or
>> y = DBLARR(100, LOWER = 1)
>>
>> so that accessing elements such as x[-4] or y[100] are o.k.?
>
> Yes, that would make a lot of code much more understandable
> and less prone to errors during development.

Tell me about it! :o)

>>

Page 4 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1954
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14006&goto=26117#msg_26117
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26117
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> I know this can be done now with judicious use of proxy indices, e.g.
>>
>> FOR i = -5, 5 DO BEGIN
>> ix = i + 5
>> PRINT, x[ix]
>> do other stuff with negative i's....
>> ENDFOR
>>
>> but sometimes this makes code hard to follow (or explain to
>> someone who's never used the
>> code before) in direct correspondence with a physical process.
>>
>> It seems like such a simple thing to be able to do (with default
>> action being start at
>> index 0) although I'm sure the amount of work required to
>> implement this would be
>> horrendous. Still, it shur would be nice.....
>>
> That depends upon how IDL already keeps track of arrays
> internally. In PL/1, for example, one declared an array with the
> boundaries for each dimension in the form lowerbound:upperbound,
> where specification of the lower bound and the colon were optional.
> If only the upper bound were specified, then the lower bound defaulted
> to 1. In its internal representation of arrays, IIRC, PL/1 kept
> the lower and upper boundaries of each dimension as part of a control
> block preceding the actual array memory. If a language implementation
> doesn't already store both boundaries, or equivalently, the lower
> boundary and number of elements, for each dimension, then yes, adding
> such support might well be a major headache.

One big problem that occurred to me was how one would implicitly or explicitly specify the
array bounds over a procedure or function call in IDL.

Consider the following Fortran 90 code:

 program test_bounds

 integer, parameter :: n = 20
 real, dimension(0:n) :: x
 integer :: i

 ! -- Fill the array (like FINDGEN)
 x = (/ (real(i),i=0,n) /)

 print *, 'In Main'
 print *, 'LBOUND(x)=',LBOUND(x)
 print *, 'UBOUND(x)=',UBOUND(x)
 print *, 'SIZE(x) =',SIZE(x)

Page 5 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 call sub(x)

 contains

 subroutine sub(sx)

 ! -- Asummed shape dummy argument
 real, dimension(:) :: sx

 print *, 'In Sub'
 print *, 'LBOUND(sx)=',LBOUND(sx)
 print *, 'UBOUND(sx)=',UBOUND(sx)
 print *, 'SIZE(sx) =',SIZE(sx)

 end subroutine sub

 end program test_bounds

The results of which are:

 In Main
 LBOUND(x)= 0
 UBOUND(x)= 20
 SIZE(x) = 21
 In Sub
 LBOUND(sx)= 1
 UBOUND(sx)= 21
 SIZE(sx) = 21

So the upper and lower bounds as declared in the "Main" program are by default not
preserved when passing arrays unless your subroutine declaration of "sx" is

 real, dimension(0:) :: sx

i.e. from index 0->however-big-the-array-is minus 1.

So you can specify whether you wanted the lower bound of sx in Sub to be 0 or 1 (or
anything else for that matter). This seems like a simple thing but it can be a
tremendously useful feature. I don't know how you would replicate that in IDL since you
don't declare stuff in procedures/functions.

Hmmm.

paulv

--

Page 6 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Paul van Delst A little learning is a dangerous thing;
CIMSS @ NOAA/NCEP Drink deep, or taste not the Pierian spring;
Ph: (301)763-8000 x7274 There shallow draughts intoxicate the brain,
Fax:(301)763-8545 And drinking largely sobers us again.
 Alexander Pope.

Subject: Re: User selectable lower array bound?
Posted by btt on Mon, 06 Aug 2001 13:23:07 GMT
View Forum Message <> Reply to Message

Hello,

Sorry to be chiming in so late on this subject; I have a great excuse
though. I have been completely absorbed by Liam's newly arrived book.
It's wonderful! Yeah, Liam!

I got to thinking about the discussion that David, Pavel and JD had
regarding objects when it hit me that you could 'roll-your-own' (I'm not
a smoker so I hope I'm using that phrase properly).

I just whipped up an object to allow you to do just this kind of
pseudo-indexing for 1d vectors. Be aware that I have included no error
handling and haven't given this whole idea much thought (I'm still
glassy eyed from following that object thread.) Also, be aware that I
have given it a name that may prove to be a poor choice in the long
run... but you should get the idea. By the way, the big idea here is
that the defined structure persists as long as you keep the object going
during a session... that's how it "remember's" the value of lower bound.

Now back to my book,

Ben

;--------START HERE
; EXAMPLE
;	IDL> x = obj_new('findgen', 11, lower = -5)
;	IDL> print, x->GetData([-4, 0, 5])
; 1.00000 5.00000 10.0000
;	IDL> obj_destroy, x

;------
;	GetData
;------
FUNCTION FINDGEN::GetData, Indices

Return, (*Self.Data) [Indices - Self.Lower]

Page 7 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3738
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14006&goto=26075#msg_26075
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26075
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

END; GetData

;------
;	SetProperty
;------
PRO FINDGEN::SetProperty, N = N, Lower = Lower

If n_elements(Data) NE 0 Then *Self.Data = Data

If n_elements(N) NE 0 Then Begin
		;1d vectors only
	Self.N = N[0]		
		;either 'redefine' the variable or 'undefine' it
	If Self.N GT 0 Then *Self.Data = Findgen(Self.N) Else $
		Dummy = Size(Temporary(*Self.Data))
EndIf

If n_elements(Lower) NE 0 Then Self.Lower = Lower[0]

END	;SetProperty

;------
;	GetProperty
;------
PRO FINDGEN::GetProperty, Data = Data, N = N, Lower = Lower

If Arg_present(Data) Then Data = *Self.Data
N = Self.N
Lower = Self.Lower

END	;GetProperty

;------
;	Initialization
;------
FUNCTION FINDGEN::INIT, N, LOWER = lower

If n_elements(N) EQ 0 Then Self.N = 0L Else Self.N = 0L > N[0]
If n_elements(lower) EQ 0 Then Self.Lower = 0L Else Self.Lower = Lower[0]

If Self.N GT 0 Then Self.Data = Ptr_NEW(Findgen(Self.N))	Else $
	Self.Data = Ptr_NEW(/Allocate)

Return, 1
END	;Init

Page 8 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;-----
; CleanUp
;-----
PRO FINDGEN::CleanUp

If Ptr_Valid(Self.Data) Then Ptr_Free, Self.Data

END	;CleanUp

;-----
;	Definiton
;------
PRO FINDGEN__DEFINE

Struct = {FINDGEN, $

	Data: ptr_new(), $; the data array
	N: 0L, $;this handles only 1d arrays right now
	Lower: 0L}			;the indexed address of the lower bound
	
END
;--------END HERE

Jeff Guerber wrote:
>
> On Thu, 2 Aug 2001, Paul van Delst wrote:
>
>> Is is just me, or would anyone else find useful the ability to define
>> arrays in IDL such that the lower bound is *not* always zero? Sorta
>> like:
>>
>> x = FINDGEN(11, LOWER = -5)
>> or
>> y = DBLARR(100, LOWER = 1)
>>
>> so that accessing elements such as x[-4] or y[100] are o.k.? [...]
>
> Here, here!! This was #1 on my (13-item) contribution to last summer's
> "Top 10 IDL Requests" discussion. As I pointed out then, Fortran's had
> this capability for decades. (And IDL is expressly a data-analysis
> language, like Fortran, not a systems-programming language like C.) The
> biggest problem I see is that certain IDL intrinsics, like WHERE(), return
> -1 to indicate an invalid index. Perhaps WHERE could return
> (lowerbound-1) instead, on the presumption that existing programs would be
> using 0-based arrays? Of course it's much better to check the COUNT=
> keyword anyway. (This would also be a good application for some sort of
> "undefined value" type.)

Page 9 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> (IMHO, the two worst features IDL picked up from (presumably) C are
> starting arrays at 0 (which makes some sense in C, due to the tight
> coupling of arrays and pointers, but this isn't the case in IDL), and
> prefix syntax for the array dereferencing operator. Concerning the
> latter, I've since learned that even Dennis Ritchie apparently now thinks
> it was a mistake; from his "The Development of the C Language"
> (http://cm.bell-labs.com/who/dmr/chist.pdf), page 12:
>
> An accident of syntax contributed to the perceived complexity of
> the language. The indirection operator, spelled * in C, is
> syntactically a unary prefix operator, just as in BCPL and B [C's
> predecessor languages]. ... Sethi [Sethi 81] observed that many of
> the nested declarations and expressions would become simpler if the
> indirection operator had been taken as a postfix operator instead
> of prefix, but by then it was too late to change.
>
> Oh, make that THREE worst features: Also the use of integers for
> Boolean data, instead of having a true logical or Boolean data type.
> VERY confusing.)
>
> Of course, these opinions are my own and don't reflect those of
> Raytheon or NASA.
>
> Jeff Guerber
> Raytheon ITSS
> NASA Goddard Space Flt Ctr
> Oceans & Ice Branch (971)

--
Ben Tupper
Bigelow Laboratory for Ocean Sciences
180 McKown Point Rd.
W. Boothbay Harbor, ME 04575
btupper@bigelow.org

Subject: Re: User selectable lower array bound?
Posted by david[2] on Mon, 06 Aug 2001 14:45:58 GMT
View Forum Message <> Reply to Message

Ben Tupper writes:

> I just whipped up an object to allow you to do just this kind of
> pseudo-indexing for 1d vectors.

Oh, sure, you can do it with objects. But
isn't that, like, cheating? In any case,

Page 10 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3928
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14006&goto=26173#msg_26173
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26173
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

scientists are too busy to learn yet one
more useful programming practice.

Cheers,

David

--
David Fanning, Ph.D.
Fanning Software Consulting
Phone: 970-221-0438 E-Mail: davidf@dfanning.com
Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

Subject: Re: User selectable lower array bound?
Posted by Jeff Guerber on Thu, 09 Aug 2001 06:39:38 GMT
View Forum Message <> Reply to Message

On 3 Aug 2001 bennetsc@NOSPAMucs.orst.edu wrote:

>> It seems like such a simple thing to be able to do (with default
>> action being start at
>> index 0) although I'm sure the amount of work required to
>> implement this would be
>> horrendous. Still, it shur would be nice.....
>>
> That depends upon how IDL already keeps track of arrays
> internally. In PL/1, for example, one declared an array with the
> boundaries for each dimension in the form lowerbound:upperbound,
> where specification of the lower bound and the colon were optional.
> If only the upper bound were specified, then the lower bound defaulted
> to 1. In its internal representation of arrays, IIRC, PL/1 kept
> the lower and upper boundaries of each dimension as part of a control
> block preceding the actual array memory. If a language implementation
> doesn't already store both boundaries, or equivalently, the lower
> boundary and number of elements, for each dimension, then yes, adding
> such support might well be a major headache.

 Well, IDL does perform bounds checking, even for arrays passed into a
procedure as arguments, so it must already store at least either the upper
bound or the number of elements (which are equivalent since the lower
bound is fixed). It's likely that this is only done in one place, so
implementing lower bounds in the IDL core might not be all _that_ much
work. HOWEVER...

Page 11 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3604
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14006&goto=26223#msg_26223
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26223
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 Having thought about this further, I now think the more serious problem
would be all the library procedures (and not just RSI's!) that assume you
can loop over the elements of any array by going from 0 to
n_elements(array)-1. (Aiiigh!) Unless the bounds are lost across
procedure calls (as Paul pointed out that Fortran does), which can
sometimes be useful but which kind of defeats the point of having
definable bounds, if you ask me.

 Jeff Guerber
 Raytheon ITSS
 NASA Goddard Space Flight Ctr
 Oceans & Ice Branch (code 971)

Page 12 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

