View Forum Message <> Reply to Message In article <1994Apr5.123735.8305@news.uit.no> royd@zapffe.mat-stat.uit.no (Roy Einar Dragseth) writes: > Why isn't this supported: > IDL > x = complex(0.,1.) $> IDL> print, x^{(1./3.)}$ > % Operation illegal with complex type. > % Execution halted at \$MAIN\$. > We are running IDL. Version 3.5.1 (hp-ux hp_pa) on a HP9000/755. > Hi, neat little problem! I just tested this on my Sparc 10 running Solaris 4.1 with IDL version 3.5.1 and the problem seems even worse then you stated. The following works: IDL > x = complex(0.,1.) $IDL > print, x^{(3)}$ -0.00000, -1.00000 but, as soon as you change the print to include a float things blow up: IDL> print, $x^{(3.)}$ % Operation illegal with complex type. % Execution halted at \$MAIN\$. does anyone understand this? SHould such an operation even be allowed? -stephen Stephen C Strebel SKI TO DIE stl@maz.sma.ch and Swiss Meteorological Institute, Zuerich / LIVE TO TELL ABOUT IT 01 256 93 85 / (and pray for snow)

Subject: Re: complex arithmetic
Posted by landers on Wed, 06 Apr 1994 13:17:39 GMT
View Forum Message <> Reply to Message

First, let me agree that there's no reason that this kind of thing should not be supported. But...

Of course, you could do:

Subject: Re: complex arithmetic

Posted by stl on Wed, 06 Apr 1994 06:49:29 GMT

```
WAVE> x = complex(0.,1.)
WAVE> print, exp(3.*alog(x))
( 1.19249e-08, -1.00000)
Just a bit of residual error there in the real part....
This kind of technique will handle complex exponents, too.
It would be pretty easy to write a "pow.pro" around this - test for combo
of complex arg / non-int expo, and do the log thing.
(disclaimers - I use PV-WAVE - I tested this only lightly - YMMV - etc.)
function pow, arg, expo
on_error,2
if n_params() ne 2 then message, 'Usage: result = POW( argument, exponent )'
; argument sizes...
sa = size(arg)
se = size(expo)
; argument types...
ta = sa(sa(0)+1)
te = se(se(0)+1)
; test for structs/strings
if ta ge 7 or te ge 7 then message, 'Illegal data type.'
; check arg,expo combos - use hard way if complex^(float|double|complex)
; or anything^complex
if (ta eq 6 and te ge 4) or te eq 6 then begin
  ans = exp( expo * alog( arg ) )
endif else begin
  ans = arg^expo
endelse
return, ans
end
```

Subject: Re: complex arithmetic

Posted by jip on Wed, 06 Apr 1994 13:23:49 GMT

View Forum Message <> Reply to Message

```
In article <2ntm1pINN1ko@i32.sma.ch>, stl@sma.ch (Stephen Strebel) writes:
l> In article <1994Apr5.123735.8305@news.uit.no> rovd@zapffe.mat-stat.uit.no (Rov Einar
Dragseth) writes:
|> >Why isn't this supported:
|>>IDL>x=complex(0.,1.)
|>>IDL> print, x^{(1./3.)}
|> >% Operation illegal with complex type.
|> >% Execution halted at $MAIN$ .
|> >
[snip]
This works:
function cpower, z, p
; raise a complex number z to a power p
return,exp(p*alog(z))
end
Hope this helps.
Jim Pekar jp2d@nih.gov Disclaimer: Speaking only for myself.
 "A good public library has something to offend everyone."
Subject: Re: complex arithmetic
Posted by thompson on Wed, 06 Apr 1994 14:23:13 GMT
View Forum Message <> Reply to Message
stl@sma.ch (Stephen Strebel) writes:
> In article <1994Apr5.123735.8305@news.uit.no> royd@zapffe.mat-stat.uit.no (Roy Einar
Dragseth) writes:
>> Why isn't this supported:
\rightarrow IDL> x = complex(0.,1.)
>> IDL> print, x^{1./3.}
>> % Operation illegal with complex type.
>> % Execution halted at $MAIN$ .
>>
>> We are running IDL. Version 3.5.1 (hp-ux hp_pa) on a HP9000/755.
>>
> Hi,
```

> neat little problem! I just tested this on my Sparc 10 running Solaris

```
> 4.1 with IDL version 3.5.1 and the problem seems even worse then you
> stated. The following works:
> IDL> x = complex(0.,1.)
> IDL> print,x^(3)
> ( -0.00000, -1.00000
> but, as soon as you change the print to include a float things blow up:
> IDL> print,x^(3.)
> % Operation illegal with complex type.
> % Execution halted at $MAIN$ .
```

> does anyone understand this? SHould such an operation even be allowed?

I think the problem is that such problems are degenerate--there is more than one correct answer. For example, if we define A and B to be

```
IDL> A = COMPLEX(1,1)
IDL> B = COMPLEX(-1,-1)
and C to be
and B to be
IDL> C = A^2
IDL> PRINT, C
( 0.00000, 2.00000)
```

then A can be thought of as the square root of C. However, so can B, because A^2 and B^2 resolve to the same value. Thus, which is the correct answer for $C^{(0.5)}$?

Evidently, IDL gets around this ambiguity by not allowing one to calculate a complex number to a non-integer power, even if the floating point number could be simplified to an integer such as in your example above.

Bill Thompson

Subject: Re: complex arithmetic
Posted by salchegg on Wed, 06 Apr 1994 14:36:08 GMT
View Forum Message <> Reply to Message

I tried

```
IDL> z = complex(0.0,1.0)
IDL> print,exp(alog(z)/3)
( 0.866025, 0.500000)
IDL>
```

1/3 ln(z)/3

This is correct z = e but unfortunately incomplete.

Because:

Let n be an integer and z a complex number then 1/n

z has n solutions in the complex plane (de Moivre !!)

This would mean that IDL should have to make a new array with the solutions: $v = \exp(a\log(z)/3)$. This does not happen. Out of v(0),...,v(n-1) only v(0) is computed.

On the other hand the original question in the first posting told us about problems with the more general problem:

Let u,v be complex numbers.

٧

If we want to compute $z = u = \exp(v \operatorname{Ln}(u))$, we have to handle the problem with the complex logarithm (Ln):

```
Ln(u) = ln |z| + i (\sqrt{p}i) \text{ with } k = \{0, +/-1, +/-2, ...\}
```

and -\pi < \varphi_0 \le \pi

BUT: IDL's alog(z) only computes one value.

```
\begin{split} &\text{IDL> z = complex}(0.,1.) \\ &\text{IDL> print, } \exp(alog(z)/3.0) \\ &(\quad 0.866025, \quad 0.500000) \\ &\text{IDL> v = z} \\ &\text{IDL> print, } \exp(v^*alog(z)) & i & -pi/2 \\ &(\quad 0.207880, \quad 0.00000) & \text{which is } i & = e \\ &\text{IDL>} \end{split}
```

Markus

```
| Markus Salchegger University of Salzburg, Austria |
| Research Institute f. Software Technology (RIST++) |
| email: salchegg@coma.sbg.ac.at |
| <A HREF="http://www.coma.sbg.ac.at/~salchegg/pers.html">WWW</A> |
```

Subject: Re: complex arithmetic

Posted by isaacman on Wed, 06 Apr 1994 15:37:00 GMT

In article <thompson.765642193@serts.gsfc.nasa.gov>, thompson@serts.gsfc.nasa.gov (William Thompson) writes...

```
> I think the problem is that such problems are degenerate--there is more than
> one correct answer. For example, if we define A and B to be
> IDL> A = COMPLEX(1,1)
> IDL> B = COMPLEX(-1,-1)
> and C to be
> and B to be
> IDL> C = A^2
> IDL> PRINT, C
      0.00000,
                   2.00000)
> then A can be thought of as the square root of C. However, so can B, because
> A^2 and B^2 resolve to the same value. Thus, which is the correct answer for
> C^{(0.5)}?
>
> Evidently, IDL gets around this ambiguity by not allowing one to calculate a
> complex number to a non-integer power, even if the floating point number could
> be simplified to an integer such as in your example above.
```

I don't agree with this at all. IDL has no problem taking the square root of positive real numbers, even though $(-2.)^2 = (2.)^2$

Rich Isaacman