Subject: Re: A distracting puzzle
Posted by Craig Markwardt on Mon, 17 Sep 2001 22:19:55 GMT

View Forum Message <> Reply to Message

JD Smith <jdsmith@astro.cornell.edu> writes:

Given a polygon defined by the vertex coordinate vectors x & y, we've
seen that we can compute the indices of pixels roughly within that
polygon using polyfillv(). You can run the code attached to set-up a
framework for visualizing this. It shows a 10x10 pixel grid with an
overlain polygon by default, with pixels returned from polyfillv()
shaded.

You'll notice that polyfillv() considers only integer pixels, basically
truncating any fractional part of the input polygon vertices (you can
see this by plotting fix([x,x[0]]), etc.). For polygons on a fractional
grid, this error can be significant.

The problem posed consists of the following:

Expand on the idea of the polyfillv algorithm to calculate and return
those pixels for which *any* part of the pixel is contained within the
polygon, along with the fraction so enclosed.

For instance, the default polygon shown (invoked simply as
"poly_bounds"), would have a fraction about .5 for pixel 34, 1 for
pixels 33 & 43, and other values on the interval [0,1] for the others.
Return only those pixels with non-zero fractions, and retain polygon
vertices in fractional pixels (i.e. don't truncate like polyfillv()

does).

VVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

Question: instead of making it a 10x10 image, could you make it a
100x100 image, or even a 1000x1000 image? Then you could resample
back down using rebin, after converting to float of course, and get a
reasonably accurate estimate of the area enclosed.

This is essentially performing an integral over a complex 2-d region.
Another possibility is to do it by Monte Carlo. For example, cast a

bunch of random 2-numbers onto the plane, and only accept those within
the polygon (at least David has an IN_POLY routine, right?), and

finally compute the fraction of accepted pairs.

If you want it exactly, then it sounds like you will be performing
polygon intersections, which are non-trivial.

These ideas help?

Page 1 of 9 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14271&goto=26697#msg_26697
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26697
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Craig B. Markwardt, Ph.D. EMAIL: craigmnet@cow.physics.wisc.edu
Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response

Subject: Re: A distracting puzzle
Posted by David Fanning on Tue, 18 Sep 2001 04:29:29 GMT

View Forum Message <> Reply to Message

Craig Markwardt (craigmnet@cow.physics.wisc.edu) writes:
> These ideas help?

They help me. :-)

Cheers,

David

P.S. Let's just say this evening I finished reading

_The Last Report on the Miracles at Little No Horse

by Louise Erdrich. | have the same feeling reading

this book that | have reading you two guys: | love it,

it's wonderful. | just don't see any way | can aspire

to it. But when I'm finished, | feel calm and | have

a sense that all is well with the world. That's

worthwhile (especially this week), even if | can't

always make out what the two of you are talking about. :-)

David W. Fanning, Ph.D.

Fanning Software Consulting

Phone: 970-221-0438, E-mail: david@dfanning.com

Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

Subject: Re: A distracting puzzle
Posted by John-David T. Smith on Tue, 18 Sep 2001 16:05:35 GMT

View Forum Message <> Reply to Message

Craig Markwardt wrote:

Page 2 of 9 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14271&goto=26696#msg_26696
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26696
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14271&goto=26690#msg_26690
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26690
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>

>

>

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

VVVVVVVVVYVYVYVYVYV

In

JD Smith <jdsmith@astro.cornell.edu> writes:

Given a polygon defined by the vertex coordinate vectors x & y, we've
seen that we can compute the indices of pixels roughly within that
polygon using polyfillv(). You can run the code attached to set-up a
framework for visualizing this. It shows a 10x10 pixel grid with an
overlain polygon by default, with pixels returned from polyfillv()
shaded.

You'll notice that polyfillv() considers only integer pixels, basically
truncating any fractional part of the input polygon vertices (you can
see this by plotting fix([x,x[0]]), etc.). For polygons on a fractional
grid, this error can be significant.

The problem posed consists of the following:

Expand on the idea of the polyfillv algorithm to calculate and return
those pixels for which *any* part of the pixel is contained within the
polygon, along with the fraction so enclosed.

For instance, the default polygon shown (invoked simply as
"poly_bounds"), would have a fraction about .5 for pixel 34, 1 for
pixels 33 & 43, and other values on the interval [0,1] for the others.
Return only those pixels with non-zero fractions, and retain polygon
vertices in fractional pixels (i.e. don't truncate like polyfillv()

does).

Question: instead of making it a 10x10 image, could you make it a
100x100 image, or even a 1000x1000 image? Then you could resample
back down using rebin, after converting to float of course, and get a
reasonably accurate estimate of the area enclosed.

This is essentially performing an integral over a complex 2-d region.
Another possibility is to do it by Monte Carlo. For example, cast a

bunch of random 2-numbers onto the plane, and only accept those within
the polygon (at least David has an IN_POLY routine, right?), and

finally compute the fraction of accepted pairs.

If you want it exactly, then it sounds like you will be performing
polygon intersections, which are non-trivial.

case no one noticed, this is almost the same problem that font

anti-aliasing and drawing smooth shapes with limited pixels present to
graphics programmers. One approach is indeed over-sampling. If each
pixel is over-sampled to a 16x16 pixel grid, and then something like

po

lyfillv() is used on *that* grid with an appropriately scaled up

Pag

e 3 0of 9 ---- CGenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

polygon, you can downsample the result (using, you guessed it, rebin()),
and get an approximation (with a dynamic range of 256) to the area
intercepted. The same guys also use stochastic sampling (aka Monte
Carlo) to do the same thing, but with a smoother dithering. This might
be especially good for strange shapes with difficult to calculate areas,
but for straight-lined polygons, | had something more exact in mind.

The technique | was interested in is *area* sampling, so yes, the
polygon intersections seem necessary for calculation. The reason is
that | want much higher resolution than 100 or 256 levels of area, and
ideally the algorithm would scale well to normal arrays, which typically
have a much larger dimension than 10x10.

JD

Subject: Re: A distracting puzzle
Posted by air_jlin on Tue, 18 Sep 2001 19:18:45 GMT

View Forum Message <> Reply to Message

and a sense of awe and wonder. the feeling of "it's amazing
someone understands that" and of seeing "wow, you can do that
w/ idI?" is ultimately encouraging and inspiring :)

best,
-Johnny

Johnny Lin

CIRES, University of Colorado

Work Phone: (303) 735-1636

Web: http://cires.colorado.edu/~johnny/

David Fanning <david@dfanning.com> wrote in message
news:<MPG.16107b955ffeabcc9896ad@news.frii.com>...

P.S. Let's just say this evening I finished reading

The Last Report on the Miracles at Little No Horse

by Louise Erdrich. | have the same feeling reading

this book that | have reading you two guys: | love it,

it's wonderful. | just don't see any way | can aspire

to it. But when I'm finished, | feel calm and | have

a sense that all is well with the world. That's

worthwhile (especially this week), even if | can't

always make out what the two of you are talking about. :-)

VVVVYVYVYVVYVYV

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14271&goto=26688#msg_26688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: A distracting puzzle
Posted by Martin Downing on Tue, 18 Sep 2001 21:52:16 GMT

View Forum Message <> Reply to Message

Hi JD,

Since you are interested in high resolution, the relationship between pixels
and points is of interest.

l.e.: where in pixel (i,j) is point P(x=i, y=j)? Do you consider the pixel

to be centered on the point P(i,j) or P(i+0.5,j+0.5)?

Martin

Martin Downing,

Clinical Research Physicist,

Orthopaedic RSA Research Centre,
Woodend Hospital, Aberdeen, AB15 6LS.
Tel. 01224 556055 / 07903901612

Fax. 01224 556662

m.downing@abdn.ac.uk

"JD Smith" <jdsmith@astro.cornell.edu> wrote in message
news:3BA770CF.E6EFDEB2@astro.cornell.edu...

> Craig Markwardt wrote:

>>

>> JD Smith <jdsmith@astro.cornell.edu> writes:

>>

>>>

>>> Given a polygon defined by the vertex coordinate vectors x & y, we've
>>> seen that we can compute the indices of pixels roughly within that
>>> polygon using polyfillv(). You can run the code attached to set-up a
>>> framework for visualizing this. It shows a 10x10 pixel grid with an
>>> overlain polygon by default, with pixels returned from polyfillv()
>>> shaded.

>>>

>>> You'll notice that polyfillv() considers only integer pixels,

basically

>>> truncating any fractional part of the input polygon vertices (you can
>>> see this by plotting fix([x,x[0]]), etc.). For polygons on a

fractional

>>> grid, this error can be significant.

>>>

>>> The problem posed consists of the following:

>>>

>>> Expand on the idea of the polyfillv algorithm to calculate and return
>>> those pixels for which *any* part of the pixel is contained within the

Page 5 of 9 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2741
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14271&goto=26686#msg_26686
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26686
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> polygon, along with the fraction so enclosed.

>>>

>>> For instance, the default polygon shown (invoked simply as

>>> "poly_bounds"), would have a fraction about .5 for pixel 34, 1 for

>>> pixels 33 & 43, and other values on the interval [0,1] for the others.

>>> Return only those pixels with non-zero fractions, and retain polygon
>>> vertices in fractional pixels (i.e. don't truncate like polyfillv()

>>> does).

>>

>> Question: instead of making it a 10x10 image, could you make it a

>> 100x100 image, or even a 1000x1000 image? Then you could resample
>> pack down using rebin, after converting to float of course, and get a

>> reasonably accurate estimate of the area enclosed.

>>

>> This is essentially performing an integral over a complex 2-d region.

>> Another possibility is to do it by Monte Carlo. For example, cast a

>> punch of random 2-numbers onto the plane, and only accept those within
>> the polygon (at least David has an IN_POLY routine, right?), and

>> finally compute the fraction of accepted pairs.

>> |f you want it exactly, then it sounds like you will be performing
>> polygon intersections, which are non-trivial.

In case no one noticed, this is almost the same problem that font
anti-aliasing and drawing smooth shapes with limited pixels present to
graphics programmers. One approach is indeed over-sampling. If each
pixel is over-sampled to a 16x16 pixel grid, and then something like
polyfillv() is used on *that* grid with an appropriately scaled up

polygon, you can downsample the result (using, you guessed it, rebin()),
and get an approximation (with a dynamic range of 256) to the area
intercepted. The same guys also use stochastic sampling (aka Monte
Carlo) to do the same thing, but with a smoother dithering. This might
be especially good for strange shapes with difficult to calculate areas,
but for straight-lined polygons, | had something more exact in mind.

The technique | was interested in is *area* sampling, so yes, the
polygon intersections seem necessary for calculation. The reason is
that | want much higher resolution than 100 or 256 levels of area, and
ideally the algorithm would scale well to normal arrays, which typically
have a much larger dimension than 10x10.

VVVVVVVVVVVVVVVVYVYVYVYV

JD

Subject: Re: A distracting puzzle
Posted by John-David T. Smith on Wed, 19 Sep 2001 13:28:13 GMT

View Forum Message <> Reply to Message

Page 6 of 9 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14271&goto=26683#msg_26683
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26683
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Martin Downing wrote:
Hi JD,

Since you are interested in high resolution, the relationship between pixels
and points is of interest.

l.e.: where in pixel (i,j) is point P(x=i, y=j)? Do you consider the pixel

to be centered on the point P(i,j) or P(i+0.5,j+0.5)?

VVVVYVYVYVYVYV

Martin

This choice is somewhat arbitrary, but my convention has always been the
latter: pixels centered at the 1/2 pixel. E.g. pixel [0,0] has center
[0.5,0.5], and its lower left edge corresponds to [0.0,0.0]:

[0.0,1.0] [1.0,1.0]

[0.0,0.0] [1.0,0.0]

In case anyone is actually trying this for real, the correct answers for
the 10x10 array and the default polygon given are (using my horribly
slow algorithm):

| 11 0.3295 |
| 12 0.1284 |
| 21 0.3765 |
| 22 0.9866 |
| 23 0.4890 |
| 31 0.0567 |
| 32 0.9669 |
| 33 1.0000 |
| 34 0.5000 |
| 42 0.6706 |
| 43 1.0000 |
| 44 0.9006 |
| 45 0.0861 |
|52 0.3176 |
| 53 0.8559 |

Page 7 of 9 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

| 54 0.1299 |
| 62 0.0282 |
| 63 0.0876 |

Subject: Re: A distracting puzzle
Posted by Stein Vidar Hagfors H[1] on Tue, 25 Sep 2001 16:11:10 GMT

View Forum Message <> Reply to Message

If what's being sought here is only to distinguish which pixels have *some*
area inside the polygon and which do not, wouldn't it be sufficient to check
the corners? l.e., in a continuum of pixel coordinates, given corners with
coordinates [0,0], [1,0], [1,1], [0,1], it can be checked whether each of
those are inside versus outside any defined polygon. If one or more of the
corners is inside, then some area is also inside..

| have included some simple-minded routines | wrote some years ago to check
whether a point is inside or outside a polygon...

Stein Vidar

;; $ld: vectorangle.pro,v 1.1 1999/06/02 16:24:14 steinhh Exp $

;;The angle between vector A & B

;; The angle that vector A needs to be rotated (counterclockwise) in order
;; to be parallell to B

FUNCTION vectorangle,x1,y1,x2,y2,zerovalue=zerovalue
default,zerovalue,0.0

dp = x1*x2 + yl*y2
cp = x1*y2 - x2*y1

ix = where(dp EQ 0 AND cp EQ 0)
IF ix(0) EQ -1L THEN return,atan(cp,dp)*'radeg

dp(ix) = 1.0

res = atan(cp,dp)*'radeg
res(ix) = zerovalue
return,res

END

Page 8 of 9 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3441
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14271&goto=26729#msg_26729
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26729
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;» $ld: insidepolygon.pro,v 1.2 1999/06/02 16:25:59 steinhh Exp $
;; Return true if the given point is inside the

;; Poly == [2,N]

FUNCTION insidepolygon,ip,x,y,$
edge_is_inside=edge_is_inside

IF size(ip,/type) NE 4 AND size(ip,/type) NE 5 THEN p = float(ip) $
ELSE BEGIN

copyback =1

p = temporary(ip)
END

np = (size(p))(2)

x1 = p(0,*)-x
yl=p(1%)-y
x2 = shift(p(0,*),0,-1)-x
y2 = shift(p(1,%),0,-1)-y

zeroval = 1e5
theta = vectorangle(x1,y1,x2,y2,zerovalue=zeroval)

ix = where(theta EQ zeroval $
OR abs(theta-180.0d) LT 1le-4 $
OR abs(theta+180.0d) LT 1e-4,count)
IF count GT O THEN BEGIN
result = keyword_set(edge_is_inside)
GOTO,finished
END

;; Test for those....

result = abs(total(theta)) GT 180.0
finished:

IF copyback THEN ip = temporary(p)

return,result
END

Page 9 of 9 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

