
Subject: Re: A distracting puzzle
Posted by Craig Markwardt on Mon, 17 Sep 2001 22:19:55 GMT
View Forum Message <> Reply to Message

JD Smith <jdsmith@astro.cornell.edu> writes:

>
> Given a polygon defined by the vertex coordinate vectors x & y, we've
> seen that we can compute the indices of pixels roughly within that
> polygon using polyfillv(). You can run the code attached to set-up a
> framework for visualizing this. It shows a 10x10 pixel grid with an
> overlain polygon by default, with pixels returned from polyfillv()
> shaded.
>
> You'll notice that polyfillv() considers only integer pixels, basically
> truncating any fractional part of the input polygon vertices (you can
> see this by plotting fix([x,x[0]]), etc.). For polygons on a fractional
> grid, this error can be significant.
>
> The problem posed consists of the following:
>
> Expand on the idea of the polyfillv algorithm to calculate and return
> those pixels for which *any* part of the pixel is contained within the
> polygon, along with the fraction so enclosed.
>
> For instance, the default polygon shown (invoked simply as
> "poly_bounds"), would have a fraction about .5 for pixel 34, 1 for
> pixels 33 & 43, and other values on the interval [0,1] for the others.
> Return only those pixels with non-zero fractions, and retain polygon
> vertices in fractional pixels (i.e. don't truncate like polyfillv()
> does).

Question: instead of making it a 10x10 image, could you make it a
100x100 image, or even a 1000x1000 image? Then you could resample
back down using rebin, after converting to float of course, and get a
reasonably accurate estimate of the area enclosed.

This is essentially performing an integral over a complex 2-d region.
Another possibility is to do it by Monte Carlo. For example, cast a
bunch of random 2-numbers onto the plane, and only accept those within
the polygon (at least David has an IN_POLY routine, right?), and
finally compute the fraction of accepted pairs.

If you want it exactly, then it sounds like you will be performing
polygon intersections, which are non-trivial.

These ideas help?

Page 1 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14271&goto=26697#msg_26697
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26697
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Cheers,
Craig

--
 -- --------------
Craig B. Markwardt, Ph.D. EMAIL: craigmnet@cow.physics.wisc.edu
Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response
 -- --------------

Subject: Re: A distracting puzzle
Posted by David Fanning on Tue, 18 Sep 2001 04:29:29 GMT
View Forum Message <> Reply to Message

Craig Markwardt (craigmnet@cow.physics.wisc.edu) writes:

> These ideas help?

They help me. :-)

Cheers,

David

P.S. Let's just say this evening I finished reading
The Last Report on the Miracles at Little No Horse
by Louise Erdrich. I have the same feeling reading
this book that I have reading you two guys: I love it,
it's wonderful. I just don't see any way I can aspire
to it. But when I'm finished, I feel calm and I have
a sense that all is well with the world. That's
worthwhile (especially this week), even if I can't
always make out what the two of you are talking about. :-)

--
David W. Fanning, Ph.D.
Fanning Software Consulting
Phone: 970-221-0438, E-mail: david@dfanning.com
Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

Subject: Re: A distracting puzzle
Posted by John-David T. Smith on Tue, 18 Sep 2001 16:05:35 GMT
View Forum Message <> Reply to Message

Craig Markwardt wrote:

Page 2 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14271&goto=26696#msg_26696
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26696
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14271&goto=26690#msg_26690
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26690
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> JD Smith <jdsmith@astro.cornell.edu> writes:
>
>>
>> Given a polygon defined by the vertex coordinate vectors x & y, we've
>> seen that we can compute the indices of pixels roughly within that
>> polygon using polyfillv(). You can run the code attached to set-up a
>> framework for visualizing this. It shows a 10x10 pixel grid with an
>> overlain polygon by default, with pixels returned from polyfillv()
>> shaded.
>>
>> You'll notice that polyfillv() considers only integer pixels, basically
>> truncating any fractional part of the input polygon vertices (you can
>> see this by plotting fix([x,x[0]]), etc.). For polygons on a fractional
>> grid, this error can be significant.
>>
>> The problem posed consists of the following:
>>
>> Expand on the idea of the polyfillv algorithm to calculate and return
>> those pixels for which *any* part of the pixel is contained within the
>> polygon, along with the fraction so enclosed.
>>
>> For instance, the default polygon shown (invoked simply as
>> "poly_bounds"), would have a fraction about .5 for pixel 34, 1 for
>> pixels 33 & 43, and other values on the interval [0,1] for the others.
>> Return only those pixels with non-zero fractions, and retain polygon
>> vertices in fractional pixels (i.e. don't truncate like polyfillv()
>> does).
>
> Question: instead of making it a 10x10 image, could you make it a
> 100x100 image, or even a 1000x1000 image? Then you could resample
> back down using rebin, after converting to float of course, and get a
> reasonably accurate estimate of the area enclosed.
>
> This is essentially performing an integral over a complex 2-d region.
> Another possibility is to do it by Monte Carlo. For example, cast a
> bunch of random 2-numbers onto the plane, and only accept those within
> the polygon (at least David has an IN_POLY routine, right?), and
> finally compute the fraction of accepted pairs.
>
> If you want it exactly, then it sounds like you will be performing
> polygon intersections, which are non-trivial.

In case no one noticed, this is almost the same problem that font
anti-aliasing and drawing smooth shapes with limited pixels present to
graphics programmers. One approach is indeed over-sampling. If each
pixel is over-sampled to a 16x16 pixel grid, and then something like
polyfillv() is used on *that* grid with an appropriately scaled up

Page 3 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

polygon, you can downsample the result (using, you guessed it, rebin()),
and get an approximation (with a dynamic range of 256) to the area
intercepted. The same guys also use stochastic sampling (aka Monte
Carlo) to do the same thing, but with a smoother dithering. This might
be especially good for strange shapes with difficult to calculate areas,
but for straight-lined polygons, I had something more exact in mind.

The technique I was interested in is *area* sampling, so yes, the
polygon intersections seem necessary for calculation. The reason is
that I want much higher resolution than 100 or 256 levels of area, and
ideally the algorithm would scale well to normal arrays, which typically
have a much larger dimension than 10x10.

JD

Subject: Re: A distracting puzzle
Posted by air_jlin on Tue, 18 Sep 2001 19:18:45 GMT
View Forum Message <> Reply to Message

and a sense of awe and wonder. the feeling of "it's amazing
someone understands that" and of seeing "wow, you can do that
w/ idl?" is ultimately encouraging and inspiring :)

best,
-Johnny

Johnny Lin
CIRES, University of Colorado
Work Phone: (303) 735-1636
Web: http://cires.colorado.edu/~johnny/

David Fanning <david@dfanning.com> wrote in message
news:<MPG.16107b955ffeabcc9896ad@news.frii.com>...
>
> P.S. Let's just say this evening I finished reading
> _The Last Report on the Miracles at Little No Horse_
> by Louise Erdrich. I have the same feeling reading
> this book that I have reading you two guys: I love it,
> it's wonderful. I just don't see any way I can aspire
> to it. But when I'm finished, I feel calm and I have
> a sense that all is well with the world. That's
> worthwhile (especially this week), even if I can't
> always make out what the two of you are talking about. :-)

Page 4 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14271&goto=26688#msg_26688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: A distracting puzzle
Posted by Martin Downing on Tue, 18 Sep 2001 21:52:16 GMT
View Forum Message <> Reply to Message

Hi JD,

Since you are interested in high resolution, the relationship between pixels
and points is of interest.
I.e.: where in pixel (i,j) is point P(x=i, y=j)? Do you consider the pixel
to be centered on the point P(i,j) or P(i+0.5,j+0.5)?

Martin

--
--
Martin Downing,
Clinical Research Physicist,
Orthopaedic RSA Research Centre,
Woodend Hospital, Aberdeen, AB15 6LS.
Tel. 01224 556055 / 07903901612
Fax. 01224 556662

m.downing@abdn.ac.uk

"JD Smith" <jdsmith@astro.cornell.edu> wrote in message
news:3BA770CF.E6EFDEB2@astro.cornell.edu...
> Craig Markwardt wrote:
>>
>> JD Smith <jdsmith@astro.cornell.edu> writes:
>>
>>>
>>> Given a polygon defined by the vertex coordinate vectors x & y, we've
>>> seen that we can compute the indices of pixels roughly within that
>>> polygon using polyfillv(). You can run the code attached to set-up a
>>> framework for visualizing this. It shows a 10x10 pixel grid with an
>>> overlain polygon by default, with pixels returned from polyfillv()
>>> shaded.
>>>
>>> You'll notice that polyfillv() considers only integer pixels,
basically
>>> truncating any fractional part of the input polygon vertices (you can
>>> see this by plotting fix([x,x[0]]), etc.). For polygons on a
fractional
>>> grid, this error can be significant.
>>>
>>> The problem posed consists of the following:
>>>
>>> Expand on the idea of the polyfillv algorithm to calculate and return
>>> those pixels for which *any* part of the pixel is contained within the

Page 5 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2741
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14271&goto=26686#msg_26686
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26686
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> polygon, along with the fraction so enclosed.
>>>
>>> For instance, the default polygon shown (invoked simply as
>>> "poly_bounds"), would have a fraction about .5 for pixel 34, 1 for
>>> pixels 33 & 43, and other values on the interval [0,1] for the others.
>>> Return only those pixels with non-zero fractions, and retain polygon
>>> vertices in fractional pixels (i.e. don't truncate like polyfillv()
>>> does).
>>
>> Question: instead of making it a 10x10 image, could you make it a
>> 100x100 image, or even a 1000x1000 image? Then you could resample
>> back down using rebin, after converting to float of course, and get a
>> reasonably accurate estimate of the area enclosed.
>>
>> This is essentially performing an integral over a complex 2-d region.
>> Another possibility is to do it by Monte Carlo. For example, cast a
>> bunch of random 2-numbers onto the plane, and only accept those within
>> the polygon (at least David has an IN_POLY routine, right?), and
>> finally compute the fraction of accepted pairs.
>>
>> If you want it exactly, then it sounds like you will be performing
>> polygon intersections, which are non-trivial.
>
> In case no one noticed, this is almost the same problem that font
> anti-aliasing and drawing smooth shapes with limited pixels present to
> graphics programmers. One approach is indeed over-sampling. If each
> pixel is over-sampled to a 16x16 pixel grid, and then something like
> polyfillv() is used on *that* grid with an appropriately scaled up
> polygon, you can downsample the result (using, you guessed it, rebin()),
> and get an approximation (with a dynamic range of 256) to the area
> intercepted. The same guys also use stochastic sampling (aka Monte
> Carlo) to do the same thing, but with a smoother dithering. This might
> be especially good for strange shapes with difficult to calculate areas,
> but for straight-lined polygons, I had something more exact in mind.
>
> The technique I was interested in is *area* sampling, so yes, the
> polygon intersections seem necessary for calculation. The reason is
> that I want much higher resolution than 100 or 256 levels of area, and
> ideally the algorithm would scale well to normal arrays, which typically
> have a much larger dimension than 10x10.
>
> JD

Subject: Re: A distracting puzzle
Posted by John-David T. Smith on Wed, 19 Sep 2001 13:28:13 GMT
View Forum Message <> Reply to Message

Page 6 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14271&goto=26683#msg_26683
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26683
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Martin Downing wrote:
>
> Hi JD,
>
> Since you are interested in high resolution, the relationship between pixels
> and points is of interest.
> I.e.: where in pixel (i,j) is point P(x=i, y=j)? Do you consider the pixel
> to be centered on the point P(i,j) or P(i+0.5,j+0.5)?
>
> Martin

This choice is somewhat arbitrary, but my convention has always been the
latter: pixels centered at the 1/2 pixel. E.g. pixel [0,0] has center
[0.5,0.5], and its lower left edge corresponds to [0.0,0.0]:

 [0.0,1.0] [1.0,1.0]
 +-------------+
 | |
 | [0.5,0.5] |
 | + |
 | |
 | |
 +-------------+
 [0.0,0.0] [1.0,0.0]

In case anyone is actually trying this for real, the correct answers for
the 10x10 array and the default polygon given are (using my horribly
slow algorithm):

 +============+
 | Pix Frac |
 +============+
 | 11 0.3295 |
 | 12 0.1284 |
 | 21 0.3765 |
 | 22 0.9866 |
 | 23 0.4890 |
 | 31 0.0567 |
 | 32 0.9669 |
 | 33 1.0000 |
 | 34 0.5000 |
 | 42 0.6706 |
 | 43 1.0000 |
 | 44 0.9006 |
 | 45 0.0861 |
 | 52 0.3176 |
 | 53 0.8559 |

Page 7 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 | 54 0.1299 |
 | 62 0.0282 |
 | 63 0.0876 |
 +============+

JD

Subject: Re: A distracting puzzle
Posted by Stein Vidar Hagfors H[1] on Tue, 25 Sep 2001 16:11:10 GMT
View Forum Message <> Reply to Message

If what's being sought here is only to distinguish which pixels have *some*
area inside the polygon and which do not, wouldn't it be sufficient to check
the corners? I.e., in a continuum of pixel coordinates, given corners with
coordinates [0,0], [1,0], [1,1], [0,1], it can be checked whether each of
those are inside versus outside any defined polygon. If one or more of the
corners is inside, then some area is also inside..

I have included some simple-minded routines I wrote some years ago to check
whether a point is inside or outside a polygon...

Stein Vidar

;; $Id: vectorangle.pro,v 1.1 1999/06/02 16:24:14 steinhh Exp $
;;The angle between vector A & B
;; The angle that vector A needs to be rotated (counterclockwise) in order
;; to be parallell to B

FUNCTION vectorangle,x1,y1,x2,y2,zerovalue=zerovalue

 default,zerovalue,0.0

 dp = x1*x2 + y1*y2
 cp = x1*y2 - x2*y1

 ix = where(dp EQ 0 AND cp EQ 0)
 IF ix(0) EQ -1L THEN return,atan(cp,dp)*!radeg

 dp(ix) = 1.0
 res = atan(cp,dp)*!radeg
 res(ix) = zerovalue
 return,res

END

Page 8 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3441
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14271&goto=26729#msg_26729
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26729
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;; $Id: insidepolygon.pro,v 1.2 1999/06/02 16:25:59 steinhh Exp $
;; Return true if the given point is inside the
;;

;; Poly == [2,N]

FUNCTION insidepolygon,ip,x,y,$
 edge_is_inside=edge_is_inside

 IF size(ip,/type) NE 4 AND size(ip,/type) NE 5 THEN p = float(ip) $
 ELSE BEGIN
 copyback = 1
 p = temporary(ip)
 END

 np = (size(p))(2)

 x1 = p(0,*)-x
 y1 = p(1,*)-y
 x2 = shift(p(0,*),0,-1)-x
 y2 = shift(p(1,*),0,-1)-y

 zeroval = 1e5
 theta = vectorangle(x1,y1,x2,y2,zerovalue=zeroval)

 ix = where(theta EQ zeroval $
 OR abs(theta-180.0d) LT 1e-4 $
 OR abs(theta+180.0d) LT 1e-4,count)
 IF count GT 0 THEN BEGIN
 result = keyword_set(edge_is_inside)
 GOTO,finished
 END

 ;; Test for those....

 result = abs(total(theta)) GT 180.0

finished:

 IF copyback THEN ip = temporary(p)

 return,result
END

Page 9 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

