
Subject: Re: TOTAL(): was Declaration of variables in IDL
Posted by Craig Markwardt on Thu, 04 Oct 2001 01:08:13 GMT
View Forum Message <> Reply to Message

Wayne Landsman <landsman@mpb.gsfc.nasa.gov> writes:

> Craig Markwardt wrote:
>
>> The output of TOTAL is always a floating point type.
>
> Unless, of course, one supplies the /DOUBLE keyword to TOTAL()...

When I said "a floating point type" I meant a generic floating point
type, either float, double, complex, or double complex, as opposed to
an integer type. I think I am in hearty agreement with your wishes
for an integer-aware version of TOTAL().

Craig

> I mention this because at least a couple of times (e.g. when doing
> checksums) I have wished that TOTAL() also had a /L64 keyword. For
> example, according to MACHAR() on my Solaris machine, one loses
> precision with TOTAL() when totaling an integer array that sums to
> more than 2^53, but with a L64 output, one could sum up to 2^64-1
> without losing any precision.

--
 -- --------------
Craig B. Markwardt, Ph.D. EMAIL: craigmnet@cow.physics.wisc.edu
Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response
 -- --------------

Subject: Re: TOTAL(): was Declaration of variables in IDL
Posted by John-David T. Smith on Thu, 04 Oct 2001 15:38:26 GMT
View Forum Message <> Reply to Message

Wayne Landsman wrote:
>
> Craig Markwardt wrote:
>
>> The output of TOTAL is always a floating point type.
>
> Unless, of course, one supplies the /DOUBLE keyword to TOTAL()...
>
> I mention this because at least a couple of times (e.g. when doing checksums) I
> have wished that TOTAL() also had a /L64 keyword. For example, according to
> MACHAR() on my Solaris machine, one loses precision with TOTAL() when totaling

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14340&goto=26945#msg_26945
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26945
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3389
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14340&goto=26932#msg_26932
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26932
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> an integer array that sums to more than 2^53, but with a L64 output, one could
> sum up to 2^64-1 without losing any precision.

You might be interested in this abbreviated exchange with RSI from three
years ago (almost to the day). This predated L64, of course:

 JDS

	I've always thought total() should just total the data
	in the type it was passed, with the option of
	conversion.

 RSI
	
	This ability to select the summation type to be either integer
	or byte is not enabled because in most cases this makes no
	sense due to overflow conditions. The maximum allowed value
	for an integer and a byte are fairly small and are easily
	overflowed.

	I had forwarded your suggestion to Development. I thought
	that you would want to see their response...there is some
	explanation for why TOTAL is limited :

 I think the original answer still stands. Total is designed to
	be as fast, robust and safe as possible. The ranges on bytes
	and ints are so limited that with most array operations would
	overflow the type range.

Having said that, I think I should point out that the new array_equal()
function in v5.4 goes a long way to alleviating this problem in
practical cases.

Here's how.

Suppose you have a long vector:

v=randomu(sd,10000)

and you'd like to compute whether any elements are above .995. Two
older approaches:

1)
	wh=where(v gt .995,cnt)
	if cnt ne 0 then print,'Bigger than .995'

2)
	if total(v gt .995) gt 1. then print,'Bigger than .995'

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

These work, but are unecessarily slow for large arrays, especially if
the condition being tested is likely to be satisfied right away. The
new function gives us another option:

3)

	if array_equal(v le .995,1b) eq 0b then print,'Bigger than .995'

#3 is almost always faster, depending on the random chance of where your
statement is first proven false (allowing array_equal() to stop
searching). This example is somewhat skewed, since the "v le .995"-type
calculations dominate the timing. If these are instead precomputed, I
get per run timings of:

#1) 2.45e-04
#2) 7.37e-05
#3) 3.95e-06

If you haven't used this new function, take a look. It also has the
salubrious side-effect of making your intentions somewhat clearer.

JD

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

