
Subject: Loop Arrays
Posted by Ken Mankoff on Tue, 09 Oct 2001 19:33:52 GMT
View Forum Message <> Reply to Message

Hi,

I am interested in creating circular arrays, where subscripts that would
be out-of-bounds on a regular array just start indexing on the other side
of the array.

ex:
a = circleIndgen(10)
print, a[-1]
	9
print, a[11]
	1
print, a[[0,10,20,100]]
	0, 0, 0, 0

print, a[8:11]
	8, 9, 0, 1

;;; not sure if this makes sense, but i think it can easily be
;;; done if the rest is possible...
print, a[8:2]
	8, 9, 0, 1

I think that overloading the [] operators is not an option from my
understanding of IDL. Does anyone know if this is possible? Desirable?
Dumb?

Thanks,

 -k.

--
Ken Mankoff
LASP://303.492.3264
http://lasp.colorado.edu/~mankoff/

Subject: Re: Loop Arrays
Posted by K. Bowman on Tue, 09 Oct 2001 20:50:23 GMT
View Forum Message <> Reply to Message

In article
<Pine.LNX.4.33.0110091318470.28938-100000@snoe.colorado.edu>, Ken
Mankoff <mankoff@lasp.colorado.edu> wrote:

Page 1 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3445
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14353&goto=26979#msg_26979
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=26979
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3523
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14353&goto=27118#msg_27118
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=27118
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Try the MOD function.

Ken Bowman

Subject: Re: Loop Arrays
Posted by David Fanning on Tue, 09 Oct 2001 21:09:41 GMT
View Forum Message <> Reply to Message

K. Bowman (k-bowman@null.tamu.edu) writes:

> Try the MOD function.

Oh, man. You're no fun, Ken. :-(

David
--
David W. Fanning, Ph.D.
Fanning Software Consulting
Phone: 970-221-0438, E-mail: david@dfanning.com
Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

Subject: Re: Loop Arrays
Posted by Craig Markwardt on Wed, 10 Oct 2001 05:46:14 GMT
View Forum Message <> Reply to Message

Ken Mankoff <mankoff@I.HATE.SPAM.cs.colorado.edu> writes:

> On Tue, 9 Oct 2001, Mark Hadfield wrote:
>
>> From: "Ken Mankoff" <mankoff@lasp.colorado.edu>
>>> I am interested in creating circular arrays, where subscripts that would
>>> be out-of-bounds on a regular array just start indexing on the other side
>>> of the array.
>>
>> You can do quite a lot with ordinary arrays using arrays of indices, eg
>>
>> a = indgen(10)
>> print, a[[0,10,20,100] mod n_elements(a)]
>>
>
> This is the technique I have been using. However there are 2 cases it does
> not cover:
>

Page 2 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14353&goto=27117#msg_27117
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=27117
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14353&goto=27102#msg_27102
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=27102
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> 1) negative indexes require a few more lines of code to get your example
> to work. I would recode it as:
>
> a = indgen(10)
> indexes = [0,10,20,100,-10,-22] ;;; or some other values...
> ind = indexes mod n_elements(a)
> neg = where(ind lt 0, num)
> if (num ne 0) then ind[neg] = ind[neg] + n_elements(a)
> print, a[ind]
>
> 2) subscript ranges. You cannot do:
> print, a[8:12 mod n_elements(a)]
>
> It is these two specific abilities that I would like to have.

Hi Ken--

Like Mark, I too have longed for the ability to index "from the
vright," so to speak, using negative numbers, or some kind of notation.
Unfortunately, negative numbers already have a meaning, or, err,
rather, the already have a non-meaning when used in an index list.
Negative numbers and too-big numbers are clipped when used in an index
list.

However, you can get a little of what you want back by using this
notation:

 print, a[(ii + na) MOD na]

If ii is guaranteed only to be in the range of [-na to +na] then this
will always work. As you pointed out though, you can't do this with
index ranges.

Good luck,
Craig

--
 -- --------------
Craig B. Markwardt, Ph.D. EMAIL: craigmnet@cow.physics.wisc.edu
Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response
 -- --------------

Subject: Re: Loop Arrays
Posted by R.G.S. on Mon, 15 Oct 2001 16:46:36 GMT
View Forum Message <> Reply to Message

Ken Mankoff <mankoff@I.HATE.SPAM.cs.colorado.edu> wrote in message

Page 3 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3667
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14353&goto=27243#msg_27243
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=27243
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 news:Pine.LNX.4.33.0110141828320.13144-100000@snoe.colorado. edu...
>
> On Tue, 9 Oct 2001, Mark Hadfield wrote:
>> From: "Ken Mankoff" <mankoff@lasp.colorado.edu>
>>> I am interested in creating circular arrays, where subscripts that
would
>>> be out-of-bounds on a regular array just start indexing on the other
side
>>> of the array.

My 2 cents:
Just write a function ind() that accepts a string, and returns the desired
index array.
Then call the array as follows:

b = a(ind("-70:-56)")

I almost wrote that function, but I had too much work to do.

-bob

Subject: Re: Loop Arrays
Posted by Ken Mankoff on Tue, 16 Oct 2001 15:11:03 GMT
View Forum Message <> Reply to Message

On Mon, 15 Oct 2001, R.G.S. wrote:

>
> My 2 cents:
> Just write a function ind() that accepts a string, and returns the desired
> index array.
> Then call the array as follows:
>
> b = a(ind("-70:-56)")
>
> I almost wrote that function, but I had too much work to do.
>

I like this idea even if its not as transparent as laying a filter over
the existing IDL session that re-parses your code for you. Mostly because
this could be coded fairly easily and through keywords can even supply
multiple behaviors (i.e. circular vs from_right vs reverse...)

However, how would your ind() function know what it is subscripting?
Wouldnt it have to be:

Page 4 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3445
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14353&goto=27228#msg_27228
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=27228
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

b = ind(a, "-70:-56")

Thanks,
 -k.

--
Ken Mankoff
LASP://303.492.3264
http://lasp.colorado.edu/~mankoff/

Subject: Re: Loop Arrays
Posted by Ken Mankoff on Tue, 16 Oct 2001 17:49:45 GMT
View Forum Message <> Reply to Message

Hi Martin,

Yes, the code you supplied come the closest to doing what I want. Thank
you.

I believe I will be honing my perl skills a bit to play with an
implementation of this idea. I will let you know how it goes...

 -k.

On Mon, 15 Oct 2001, Martin Downing wrote:

>
>
> "Ken Mankoff" <mankoff@I.HATE.SPAM.cs.colorado.edu> wrote in message
> news:Pine.LNX.4.33.0110091423020.29204-100000@snoe.colorado. edu...
>> On Tue, 9 Oct 2001, Mark Hadfield wrote:
>>
>>> From: "Ken Mankoff" <mankoff@lasp.colorado.edu>
>>>> I am interested in creating circular arrays, where subscripts that
> would
>>>> be out-of-bounds on a regular array just start indexing on the other
> side
>>>> of the array.
>>>
>>> You can do quite a lot with ordinary arrays using arrays of indices, eg
>>>
>>> a = indgen(10)
>>> print, a[[0,10,20,100] mod n_elements(a)]
>>>
>>
>> This is the technique I have been using. However there are 2 cases it does

Page 5 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3445
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=14353&goto=27224#msg_27224
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=27224
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> not cover:
>>
>> 1) negative indexes require a few more lines of code to get your example
>> to work. I would recode it as:
>>
>> a = indgen(10)
>> indexes = [0,10,20,100,-10,-22] ;;; or some other values...
>> ind = indexes mod n_elements(a)
>> neg = where(ind lt 0, num)
>> if (num ne 0) then ind[neg] = ind[neg] + n_elements(a)
>> print, a[ind]
>>
>> 2) subscript ranges. You cannot do:
>> print, a[8:12 mod n_elements(a)]
>>
>> It is these two specific abilities that I would like to have.
>>
>> -k.
>
> Hi Ken,
>
> This discussion makes for interesting reading. However, except for arrays
> representing objects with circular indexing logic, such as closed
> polygons for instance, I'm not sure it is productive to prevent IDL from
> pointing out that you have run off the end of an array!
>
> Anyway, there is a way you can code range indexing above for circular
> arrays:
>
> eg for indexing a[b:c] do the following:
>
> IDL> a = indgen(10) ; to be interpreted as a circular array
> IDL> b = 9 & c = 13
> IDL> print, a[(indgen(c-b)+b) MOD n_elements(a)]
> ; read as a[b:c]
> 9 0 1 2
>
> IDL> b = 9 & c = 23
> IDL> print, a[(indgen(c-b)+b) MOD n_elements(a)] ; read as a_circ[b:c]
> 9 0 1 2 3 4 5 6 7 8 9 0 1 2
>
>
> -Is that of any use to you?
>
> regards
>
> Martin
>

Page 6 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

