Subject: Re: All day FFT....

Posted by Robert Stockwell on Wed, 06 Feb 2002 23:30:04 GMT

View Forum Message <> Reply to Message

Paul van Delst wrote:

Hey there,

an input spectrum of about 500K points (i.e. a lot, but not terribly so.). Earlier | did the

>
>
> |'ve had this process running for about, oh, 4-5 hours now where I'm reducing the resolution of
>
>

same for a spectrum of about 700K points. Something has apparently gone haywire in the

second

but | thought | better consult the idl wizards out there...
thanks for any info.

paulv

I'm betting that ~C will interrupt the process as soon
as it finishes with the FFT. LOL! I'd just kill IDL.

one - is there anything | can do to interrupt the process, check out some numbers to see if
everything is o.k. and if it is, start it up where it left off? | think that's what a *C does

My guess, regarding slowness, is "Prime Number" (number of points

in your time series). Try zeropadding up to, or truncating
down to, a nice factorable number.

I've attached my hackware factors.pro which will return the
factors of a number. (and its recursive, COOL!)"

FYI, 500K should take seconds: Here is a quicky example:

IDL> a = lindgen(1025L"2)
IDL> help,a
A LONG = Array[1050625]
IDL> tic & b = fft(a) & toc
% Compiled module: TIC.
% Compiled module: TOC.
Elapsed time: 3.9645100 Seconds.
IDL> print,factors(n_elements(a))
% Compiled module: FACTORS.
5.00000 5.00000 5.00000 5.00000 41.0000

41.0000

Page 1 of 11 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4083
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=15078&goto=29208#msg_29208
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29208
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Cheers,
bob stockwell

; do factoring of a function

; development interrupted when i realized | didn't need it
; drops the last number

function factors, n,prevfactors=prevfactors

maxfactor = fix(sqgrt(n))

if maxfactor le 1 then begin

if keyword_set(prevfactors) then begin
prevfactors = [prevfactors,n]
return,n

endif else begin
return,n

endelse

endif

fac = findgen(maxfactor-1)+2 ; 2 -- sqgrt(n)

doloop =1
factorflag = 0
counter =0

while doloop do begin
if n mod fac(counter) eq 0 then begin
factorflag = 1
newfactor = fac(counter)
if keyword_set(prevfactors) then prevfactors = [prevfactors,newfactor] $
else prevfactors = newfactor
newnumber = n/newfactor
; to iterate is human, to recurse is divine
r = factors(newnumber,prevfactors=prevfactors)
doloop =0
endif
counter = counter+1
if counter ge maxfactor-1 then doloop =0
endwhile

Page 2 of 11 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

if n_elements(prevfactors) eq 0 then prevfactors = n else begin
; only if nis prime do we add it here

if not(factorflag) then prevfactors = [prevfactors,n]

endelse

return,prevfactors

end

o test code here

n =5001

r = factors(n)

print

print

print,'Finished calculating factors '
print,'Number: ',n

print,'Factors:'

print,r

end

File Attachnments

1) factors.pro, downl oaded 84 tines

Subject: Re: All day FFT....
Posted by Martin Downing on Thu, 07 Feb 2002 09:15:45 GMT

View Forum Message <> Reply to Message

"Robert Stockwell" <rgs1967@hotmail.com> wrote in message
news:3C61BC7C.4030904@hotmail.com...

> Paul van Delst wrote:

>

>> Hey there,

>

Page 3 of 11 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=getfile&id=239
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2741
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=15078&goto=29206#msg_29206
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29206
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

My guess, regarding slowness, is "Prime Number" (number of points
in your time series). Try zeropadding up to, or truncating
down to, a nice factorable number.

I've attached my hackware factors.pro which will return the
factors of a number. (and its recursive, COOL!)"

VVVVYVYVYVYV

Hi Bob,

Inspired, | wrote a more compact version of your function which will work on
long64 too

cheers

Martin
ps: probably is already in the jpl/cm/df library anyway!

function ifactors, num, factor_start = factor_start
T

; Returns the prime factors of an integer

; inspired by Bob Stockwell

; MRD 7/2/2002

maxfac = sqrt(abs(num))
if n_elements(factor_start) eq O then begin
if maxfac gt 1073741824 then factor_start = long64(2) else factor_start =
2L
endif
; find the lowest factor and return that plus the result of factoring the
remainder
;stop
for f = factor_start, maxfac do begin
if num mod f eq O then begin
return, [f, ifactors(num/f, factor_start = f)]
endif
endfor

; or return if prime
return, [num,1]
end

Subject: prime factors (was Re: All day FFT....)
Posted by Brian Jackel on Fri, 08 Feb 2002 20:47:36 GMT

View Forum Message <> Reply to Message

Hi Bob, Martin

Page 4 of 11 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2457
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=15078&goto=29235#msg_29235
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29235
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Here's my contribution to the prime number wars.
Not recursive, I'm afraid.

A single benchmarks shows it as being 10% faster
than Martin's code. Your mileage may vary.

IDL> num= 124123L*7L*3L*5L & st= systime(1) & for indx=0,9999 do dummy=
ifactors(num) & print,systime(1)-st

6.6720001
IDL> num= 124123L*7L*3L*5L & st= systime(1) & for indx=0,9999 do dummy=
prime_factors(num) & print,systime(1)-st

5.5940000

;All bug reports cheerfully accepted
;Brian Jackel
;bjackel@phys.ucalgary.ca

T

; NAME: Prime_Factors
; PURPOSE: This function accepts a single (scalar) value, and returns a

: vector containing all the prime factors of that value. This
is

; useful for seeing if FFT's will be fast, or reducing
fractions.

; CATEGORY: Math

; CALLING SEQUENCE: Result= PRIME_FACTORS(Value)

; INPUTS: Value a scalar byte, integer, or long integer value.

Page 5 of 11 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

: KEYWORDS: SORT if set, then the result will be sorted in increasing
; order. Otherwise, factors may be scattered in no

; particular order.

; UNIQUE if set, then the result will only contain one of each

: factor ie. multiple occurances will be removed. This

: is done using the library function UNIQ. Note that

; this requires SORTIng.

; OUTPUTS: The result of this function will be a vector containing all
; prime factors of the input value. If the input value is

; prime, then the result will have only one element, equal

; to the input.

; RESTRICTIONS: Fastest if no prime factor is greater than 97, quite
slow

; after that, approximately order(sqrt(N)), where N is the

; largest prime factor.

; Only works for positive numbers.

; PROCEDURE: Do a fast search for all primes up to 97, then slowly loop
; through the rest (if any).

; EXAMPLES:

Page 6 of 11 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;IDL> test=PRIME_FACTORS(1L) & PRINT,test

; 1

;IDL> test=PRIME_FACTORS(5414145L) & PRINT,test

; 3 5 11 19 11 157

;IDL> test=PRIME_FACTORS(5414147L) & PRINT test

; 5414147

; MODIFICATION HISTORY:

; Written February 14 1995, Brian Jackel, University of Western Ontario

; September 3 1995 Bjj Increased the list of primes to 97, improved
the dumb

; loop considerably: O(n) to O(sqrt(n)/2)

; Screened input better, added /SORT and /UNIQUE

FUNCTION PRIME_FACTORS,value,SORT=sort,UNIQUE=unique

IF (N_PARAMS() LT 1) THEN MESSAGE,"Error- this function requires a
scalar input parameter"

IF (N_ELEMENTS(value) GT 1) THEN MESSAGE,"Error- this function only
accepts scalar input”

Page 7 of 11 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

IF (value EQ 0) THEN BEGIN
MESSAGE,'Warning- input value was zero ',/INFORMATIONAL
RETURN,[OL]

ENDIF

IF (value LT 0) THEN MESSAGE,'Warning- input value was
negative',/INFORMATIONAL

IF ((value - LONG(value)) NE 0) THEN BEGIN

MESSAGE,"Warning- Value should be an integer, but is
"+STRING(value),/INFORMATIONAL

RETURN,[1L]

ENDIF

work= ABS(value) ;make a working copy

factors= value/work ;1 (or maybe -1) is always a factor, albeit a
trivial one

:For this first bit we just have a list of prime numbers (up to 97),
;and check if "work" is divisible by any of them. If so, make a note
;of it, and divide "work" by the appropriate factors. Repeat until
;"work™ is no longer divisible by anything in the list. This either
:means that we've got all the factors, or the remaining ones are
larger than 97.

some_primes=

Page 8 of 11 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73, 79,83,89,97]

REPEAT BEGIN

w= WHERE((work MOD some_primes) EQ 0 ,nw) ;see if any
thing in the list matches

IF (nw GT 0) THEN BEGIN

some_primes= some_primes(w) ;throw away
everything but the prime factors

factors= [factors,some_primes]
temp= some_primes(0)
FOR indx=1,nw-1 DO temp=temp*some_primes(indx)

work= work/temp .divide the
working value by all prime factors

ENDIF

ENDREP UNTIL (nw EQ 0)

;At this point we've found all the prime factors up til 97.

;Not having any better idea, I'll just keep trying to divide "work"

;by larger and larger numbers, until I've removed all the factors,
;or the Universe ends.

;Really, we should only be trying to divide by prime numbers, but if
;I had a quick way to test the primeness of numbers I'd be rich and

;famous by now.

Page 9 of 11 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;Note, however, that even numbers aren't prime, so we can halve the
;search space by concentrating only on odd numbers. We really should
;also ignore anything that ends in 5, but that actually slows things

;down a bit. Ideally we would use a base 6 number system, which would
;allow us to ignore 2/3 of the numbers instead of 1/2 or 6/10.

;Also, we can only have to search up to SQRT(work), which changes the

;time from O(n) to O(sqrt(n)), a significant improvement.

upper_limit= FIX(SQRT(work) + 1) ;highest number to check, about
SQRT(2731)=45000, so worst case should still be pretty fast

current_try= 101L

WHILE (current_try LT upper_limit) DO BEGIN

IF ((work MOD current_try) EQ 0) THEN BEGIN

nfactors= 0
REPEAT BEGIN

work= work / current_try

nfactors= nfactors+1
ENDREP UNTIL (work MOD current_try) NE O
factors= [factors, REPLICATE(current_try,nfactors)]
upper_limit= FIX(SQRT(work) + 1)

ENDIF

Page 10 of 11 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

current_try= current_try + 2L

ENDWHILE

;At this point, if "work™ isn't 1, then it must be prime.
;Also, throw away the first element in "factors" (was a
; dummy 1) unless the input value was simply 1.

IF (work NE 1) THEN factors= [factors,work] ;anything left at this
point must be a prime

IF (value NE 1) THEN factors= factors(1:*)

IF KEYWORD_SET(SORT) OR KEYWORD_SET(UNIQUE) THEN factors= factors(
SORT(factors))

IF KEYWORD_SET(UNIQUE) THEN factors= factors(UNIQ(factors))

RETURN,factors

END

Page 11 of 11 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

