
Subject: Re: All day FFT....
Posted by Robert Stockwell on Wed, 06 Feb 2002 23:30:04 GMT
View Forum Message <> Reply to Message

Paul van Delst wrote:

> Hey there,
>
> I've had this process running for about, oh, 4-5 hours now where I'm reducing the resolution of
> an input spectrum of about 500K points (i.e. a lot, but not terribly so.). Earlier I did the
> same for a spectrum of about 700K points. Something has apparently gone haywire in the
second
> one - is there anything I can do to interrupt the process, check out some numbers to see if
> everything is o.k. and if it is, start it up where it left off? I think that's what a ^C does
> but I thought I better consult the idl wizards out there...
>
> thanks for any info.
>
> paulv

I'm betting that ^C will interrupt the process as soon
as it finishes with the FFT. LOL! I'd just kill IDL.

My guess, regarding slowness, is "Prime Number" (number of points
in your time series). Try zeropadding up to, or truncating
down to, a nice factorable number.

I've attached my hackware factors.pro which will return the
factors of a number. (and its recursive, COOL!)`

FYI, 500K should take seconds: Here is a quicky example:

IDL> a = lindgen(1025L^2)
IDL> help,a
A LONG = Array[1050625]
IDL> tic & b = fft(a) & toc
% Compiled module: TIC.
% Compiled module: TOC.
Elapsed time: 3.9645100 Seconds.
IDL> print,factors(n_elements(a))
% Compiled module: FACTORS.
 5.00000 5.00000 5.00000 5.00000 41.0000 41.0000

Page 1 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4083
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=15078&goto=29208#msg_29208
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29208
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Cheers,
bob stockwell

; do factoring of a function

; development interrupted when i realized I didn't need it
; drops the last number

function factors, n,prevfactors=prevfactors

maxfactor = fix(sqrt(n))
if maxfactor le 1 then begin
	if keyword_set(prevfactors) then begin
			prevfactors = [prevfactors,n]
			return,n
	endif else begin
		return,n
	endelse
endif

fac = findgen(maxfactor-1)+2 ; 2 -- sqrt(n)

doloop = 1
factorflag = 0
counter = 0

while doloop do begin
	if n mod fac(counter) eq 0 then begin
		factorflag = 1
		newfactor = fac(counter)
		if keyword_set(prevfactors) then prevfactors = [prevfactors,newfactor] $
			else prevfactors = newfactor
		newnumber = n/newfactor
		; to iterate is human, to recurse is divine
		r = factors(newnumber,prevfactors=prevfactors)
		doloop = 0
	endif
	counter = counter+1
	if counter ge maxfactor-1 then doloop = 0
endwhile

Page 2 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

if n_elements(prevfactors) eq 0 then prevfactors = n else begin
	; only if n is prime do we add it here
	if not(factorflag) then prevfactors = [prevfactors,n]
endelse

return,prevfactors

end

;;;;___________ test code here ___________________

n = 5001

r = factors(n)

print
print
print,'Finished calculating factors_______'
print,'Number: ',n
print,'Factors:'
print,r

end

File Attachments
1) factors.pro, downloaded 84 times

Subject: Re: All day FFT....
Posted by Martin Downing on Thu, 07 Feb 2002 09:15:45 GMT
View Forum Message <> Reply to Message

"Robert Stockwell" <rgs1967@hotmail.com> wrote in message
news:3C61BC7C.4030904@hotmail.com...
> Paul van Delst wrote:
>
>> Hey there,
>

Page 3 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=getfile&id=239
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2741
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=15078&goto=29206#msg_29206
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29206
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> My guess, regarding slowness, is "Prime Number" (number of points
> in your time series). Try zeropadding up to, or truncating
> down to, a nice factorable number.
>
> I've attached my hackware factors.pro which will return the
> factors of a number. (and its recursive, COOL!)`
>

Hi Bob,
Inspired, I wrote a more compact version of your function which will work on
long64 too
cheers

Martin
ps: probably is already in the jpl/cm/df library anyway!

function ifactors, num, factor_start = factor_start
;+
; Returns the prime factors of an integer
; inspired by Bob Stockwell
; MRD 7/2/2002
;-
 maxfac = sqrt(abs(num))
 if n_elements(factor_start) eq 0 then begin
 if maxfac gt 1073741824 then factor_start = long64(2) else factor_start =
2L
 endif
 ; find the lowest factor and return that plus the result of factoring the
remainder
;stop
 for f = factor_start, maxfac do begin
 if num mod f eq 0 then begin
 return, [f, ifactors(num/f, factor_start = f)]
 endif
 endfor

 ; or return if prime
 return, [num,1]
end

Subject: prime factors (was Re: All day FFT....)
Posted by Brian Jackel on Fri, 08 Feb 2002 20:47:36 GMT
View Forum Message <> Reply to Message

Hi Bob, Martin

Page 4 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2457
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=15078&goto=29235#msg_29235
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29235
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Here's my contribution to the prime number wars.
Not recursive, I'm afraid.

A single benchmarks shows it as being 10% faster
than Martin's code. Your mileage may vary.

IDL> num= 124123L*7L*3L*5L & st= systime(1) & for indx=0,9999 do dummy=
ifactors(num) & print,systime(1)-st
 6.6720001
IDL> num= 124123L*7L*3L*5L & st= systime(1) & for indx=0,9999 do dummy=
prime_factors(num) & print,systime(1)-st
 5.5940000

;All bug reports cheerfully accepted

;Brian Jackel

;bjackel@phys.ucalgary.ca

;+

; NAME: Prime_Factors

;

; PURPOSE: This function accepts a single (scalar) value, and returns a

; vector containing all the prime factors of that value. This
is

; useful for seeing if FFT's will be fast, or reducing
fractions.

;

; CATEGORY: Math

;

; CALLING SEQUENCE: Result= PRIME_FACTORS(Value)

;

; INPUTS: Value a scalar byte, integer, or long integer value.

;

Page 5 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; KEYWORDS: SORT if set, then the result will be sorted in increasing

; order. Otherwise, factors may be scattered in no

; particular order.

;

; UNIQUE if set, then the result will only contain one of each

; factor ie. multiple occurances will be removed. This

; is done using the library function UNIQ. Note that

; this requires SORTing.

;

; OUTPUTS: The result of this function will be a vector containing all

; prime factors of the input value. If the input value is

; prime, then the result will have only one element, equal

; to the input.

;

; RESTRICTIONS: Fastest if no prime factor is greater than 97, quite
slow

; after that, approximately order(sqrt(N)), where N is the

; largest prime factor.

;

; Only works for positive numbers.

;

; PROCEDURE: Do a fast search for all primes up to 97, then slowly loop

; through the rest (if any).

;

; EXAMPLES:

Page 6 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;

;IDL> test=PRIME_FACTORS(1L) & PRINT,test

; 1

;

;IDL> test=PRIME_FACTORS(5414145L) & PRINT,test

; 3 5 11 19 11 157

;

;IDL> test=PRIME_FACTORS(5414147L) & PRINT,test

; 5414147

;

; MODIFICATION HISTORY:

; 	Written February 14 1995, Brian Jackel, University of Western Ontario

; September 3 1995 Bjj Increased the list of primes to 97, improved
the dumb

; loop considerably: O(n) to O(sqrt(n)/2)

; Screened input better, added /SORT and /UNIQUE

;-

FUNCTION PRIME_FACTORS,value,SORT=sort,UNIQUE=unique

 IF (N_PARAMS() LT 1) THEN MESSAGE,"Error- this function requires a
scalar input parameter"

 IF (N_ELEMENTS(value) GT 1) THEN MESSAGE,"Error- this function only
accepts scalar input"

Page 7 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 IF (value EQ 0) THEN BEGIN

 MESSAGE,'Warning- input value was zero ',/INFORMATIONAL

 RETURN,[0L]

 ENDIF

 IF (value LT 0) THEN MESSAGE,'Warning- input value was
negative',/INFORMATIONAL

 IF ((value - LONG(value)) NE 0) THEN BEGIN

 MESSAGE,"Warning- Value should be an integer, but is
"+STRING(value),/INFORMATIONAL

 RETURN,[1L]

 ENDIF

 work= ABS(value) ;make a working copy

 factors= value/work ;1 (or maybe -1) is always a factor, albeit a
trivial one

;

;For this first bit we just have a list of prime numbers (up to 97),

;and check if "work" is divisible by any of them. If so, make a note

;of it, and divide "work" by the appropriate factors. Repeat until

;"work" is no longer divisible by anything in the list. This either

;means that we've got all the factors, or the remaining ones are

;larger than 97.

;

 some_primes=

Page 8 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73, 79,83,89,97]

 REPEAT BEGIN

 w= WHERE((work MOD some_primes) EQ 0 ,nw) ;see if any
thing in the list matches

 IF (nw GT 0) THEN BEGIN

 some_primes= some_primes(w) ;throw away
everything but the prime factors

 factors= [factors,some_primes]

 temp= some_primes(0)

 FOR indx=1,nw-1 DO temp=temp*some_primes(indx)

 work= work/temp ;divide the
working value by all prime factors

 ENDIF

 ENDREP UNTIL (nw EQ 0)

 ;

 ;At this point we've found all the prime factors up til 97.

 ;Not having any better idea, I'll just keep trying to divide "work"

 ;by larger and larger numbers, until I've removed all the factors,

 ;or the Universe ends.

 ;

 ;Really, we should only be trying to divide by prime numbers, but if

 ;I had a quick way to test the primeness of numbers I'd be rich and

 ;famous by now.

 ;

Page 9 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ;Note, however, that even numbers aren't prime, so we can halve the

 ;search space by concentrating only on odd numbers. We really should

 ;also ignore anything that ends in 5, but that actually slows things

 ;down a bit. Ideally we would use a base 6 number system, which would

 ;allow us to ignore 2/3 of the numbers instead of 1/2 or 6/10.

 ;

 ;Also, we can only have to search up to SQRT(work), which changes the

 ;time from O(n) to O(sqrt(n)), a significant improvement.

 upper_limit= FIX(SQRT(work) + 1) ;highest number to check, about
SQRT(2^31)=45000, so worst case should still be pretty fast

 current_try= 101L

 WHILE (current_try LT upper_limit) DO BEGIN

 IF ((work MOD current_try) EQ 0) THEN BEGIN

 nfactors= 0

 REPEAT BEGIN

 work= work / current_try

 nfactors= nfactors+1

 ENDREP UNTIL (work MOD current_try) NE 0

 factors= [factors, REPLICATE(current_try,nfactors)]

 upper_limit= FIX(SQRT(work) + 1)

 ENDIF

Page 10 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 current_try= current_try + 2L

 ENDWHILE

 ;At this point, if "work" isn't 1, then it must be prime.

 ;Also, throw away the first element in "factors" (was a

 ; dummy 1) unless the input value was simply 1.

 ;

 IF (work NE 1) THEN factors= [factors,work] ;anything left at this
point must be a prime

 IF (value NE 1) THEN factors= factors(1:*)

 IF KEYWORD_SET(SORT) OR KEYWORD_SET(UNIQUE) THEN factors= factors(
SORT(factors))

 IF KEYWORD_SET(UNIQUE) THEN factors= factors(UNIQ(factors))

RETURN,factors

END

Page 11 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

