
Subject: Re: Visual C++ compiler option for >1GB of memory
Posted by Martin Downing on Wed, 13 Mar 2002 15:40:56 GMT
View Forum Message <> Reply to Message

Hi Mark,
You may be referring to a side track we (including you!) had on a thread
called
"Large Tiff File Question"
 http://groups.google.com/groups?hl=en&threadm=e415b359.0 201171218.55c8a2a6%4
0posting.google.com&rnum=1

I refereed to 1999 NT documentation I had read on MS that claimed you can
have larger process sizes based on your choice of operating system,
from workstation, server, or enterprise edition.
I wouldn't be surprised if there was now a similar choice for w2K / XP

cheers

Martin

--
--
Martin Downing,
Clinical Research Physicist,
Grampian Orthopaedic RSA Research Centre,
Woodend Hospital, Aberdeen, AB15 6LS.

"Mark Rivers" <rivers@cars.uchicago.edu> wrote in message
news:67Cj8.118$s4.8933@news.uchicago.edu...
> Folks,
>
> I seem to recall a post in this newsgroup describing a compiler or linker
> switch for Visual C++ that allows the creation of applications that can
> access memory beyond 1GB, up to the Windows limit of 2GB. The default
> setting of the switch is a 1GB limit. I've search the Google archive and I
> can't find the message. Anyone recall posting or seeing it?
>
> Thanks,
> Mark Rivers
>
>

Subject: Re: Visual C++ compiler option for >1GB of memory
Posted by Mark Rivers on Thu, 14 Mar 2002 04:25:35 GMT
View Forum Message <> Reply to Message

Martin Downing <martin.downing@ntlworld.com> wrote in message

Page 1 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2741
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=15317&goto=29796#msg_29796
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29796
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3450
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=15317&goto=29780#msg_29780
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29780
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 news:vqKj8.44982$y76.4948562@news6-win.server.ntlworld.com.. .
> Hi Mark,
> You may be referring to a side track we (including you!) had on a thread
> called
> "Large Tiff File Question"
>
 http://groups.google.com/groups?hl=en&threadm=e415b359.0 201171218.55c8a2a6%4
> 0posting.google.com&rnum=1
>
> I refereed to 1999 NT documentation I had read on MS that claimed you can
> have larger process sizes based on your choice of operating system,
> from workstation, server, or enterprise edition.
> I wouldn't be surprised if there was now a similar choice for w2K / XP

That thread is not quite what I'm looking for. It implies that IDL should
be able to allocate 2GB under NT 4.0. However, I have machines with 1GB of
RAM and 3GB of virtual memory, but the maximum memory IDL can allocate is
almost exactly 1GB. I know I remember seeing a message that said that
Visual C++ has a compiler or linker switch to control the maximum amount of
heap space that an application can use. The message said that the default
is 1GB, and it can be raised to 2GB.

I want to write a simple C program to test this, seeing if I can malloc()
more than 1GB in a Windows application. If so, then the next step is to
twist RSI's arm to build the next minor release of IDL for Windows with this
switch. In my current application the difference between 1GB and 2GB is
very significant.

The longer-term solution is 64-bit IDL on the Itanium processors and 64-bit
Linux or Windows.

Mark

Subject: Re: Visual C++ compiler option for >1GB of memory
Posted by Pete[1] on Thu, 14 Mar 2002 22:15:06 GMT
View Forum Message <> Reply to Message

"Mark Rivers" <rivers@cars.uchicago.edu> wrote:
<...>
> That thread is not quite what I'm looking for. It implies that IDL should
> be able to allocate 2GB under NT 4.0. However, I have machines with 1GB
of
> RAM and 3GB of virtual memory, but the maximum memory IDL can allocate is
> almost exactly 1GB. I know I remember seeing a message that said that
> Visual C++ has a compiler or linker switch to control the maximum amount
of
> heap space that an application can use. The message said that the default

Page 2 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3034
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=15317&goto=29769#msg_29769
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29769
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> is 1GB, and it can be raised to 2GB.
>
> I want to write a simple C program to test this, seeing if I can malloc()
> more than 1GB in a Windows application. If so, then the next step is to
> twist RSI's arm to build the next minor release of IDL for Windows with
this
> switch. In my current application the difference between 1GB and 2GB is
> very significant.
>
> The longer-term solution is 64-bit IDL on the Itanium processors and
64-bit
> Linux or Windows.
>
> Mark

Hi Mark,

I think that I might have posted the message that you mean. The post was
sent by a previous version of this particular product (of society) that was
even more ignorant than the current version, believe it or not. (Even the
current version - Peter Mason version 43.2b - needs a BS flush to work
properly.)
But to get to the point...
In my previous post I think I mentioned that I didn't have a PC with
sufficient clout to test large allocations. That is still the case. But
I have done some actual digging this time to try to figure out how the
Visual C heap works. Documentation on the nitty-gritty is scarce in parts,
but I think I have the general idea.

According to the CRT source code (heapinit.c), VC versions 5 and 6 create a
win32 heap for their allocations.
They create this heap with a maximum size of 0. In other words, this is a
growable Win32 heap. But if you read the "PlatSDK" entry for HeapCreate()
you'll see that even a growable heap like this will not deal with an
allocation of 0x7FFF8 bytes (roughly half a megabyte) or more itself.
Reportedly, such allocations are passed on to the Win32 function
VirtualAlloc().
If anything can allocate a large block of memory in Win32, I would think
that it would have to be VirtualAlloc().
If you have the "memory" (RAM + page file), then I suspect that the only
thing that would prevent you from allocating the bulk of the accessable 2GB
address space in one go, IN A VC PROGRAM, is the fragmentation of this
address space. Unfortunately, such fragmentation is quite likely. There
might be some loaded DLLs (e.g., that pesky MFC DLL) or other allocations
that are chopping it up in such a way that there just isn't a single free
block much greater than 1GB. (On the other hand, I think that it is
unlikely that you would need a single huge, contiguous slab of memory in
your program?)

Page 3 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

I suggest that a basic test of your computer's address space would be to
write a small stand-alone executable in C that used VirtualAlloc() to
attempt the allocation of about 1.5GB of memory.
A more realistic test (assuming that you are working with a number of arrays
and stuff) would be to try several allocations (like maybe 10-100MB each)
totalling to about 1.7 GB or so.

If you can allocate over 1GB in a stand-alone executable, then (as you point
out) the implication is that there is something that IDL is doing that is
spoiling things. Some years back I when I was using Windows 95, I noticed
that IDL was using the "SmartHeap" memory manager on this platform. They
might still be using a product like this, or they might have written their
own memory-management routines. If so, a wild guess is that this software
might be reserving (but not necessarily committing) slabs of the address
space for its heaps.
As far as trying things out *here* is concerned, I'm not really clear on how
calling malloc() inside a DLL attached to IDL would work. (A DLL doesn't
have its own stack or heap, reportedly.) But I would think that calling
VirtualAlloc() from within the DLL would bypass anything that IDL is doing
and allow you to test your PC's address space.

A final suggestion: I don't know what the deal is with Windows 2000, but
(reportedly) if you have Windows NT4 *SERVER*, Enterprise Edition rather
than Windows NT Workstation, there's a boot-time option to get a 3GB user
address space instead of a 2GB one. It might be worth your while to try
this out.

Hope this helps,
Peter Mason (version 43.2 beta)

Subject: Re: Visual C++ compiler option for >1GB of memory
Posted by Mark Hadfield on Thu, 14 Mar 2002 22:32:15 GMT
View Forum Message <> Reply to Message

> ...Even the current version - Peter Mason version 43.2b - needs a BS
> flush to work properly...

b?

--
Mark Hadfield
m.hadfield@niwa.co.nz Ka puwaha et tai nei
http://katipo.niwa.co.nz/~hadfield Hoea tatou
National Institute for Water and Atmospheric Research (NIWA)

Page 4 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1027
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=15317&goto=29768#msg_29768
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29768
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Visual C++ compiler option for >1GB of memory
Posted by Martin Downing on Thu, 14 Mar 2002 23:23:54 GMT
View Forum Message <> Reply to Message

I would have thought it entirely reasonable that the limit to process size
is set by the OS, not VC++ or IDL. The article below implies that all
Windows 2K variants can be set to use at least 4GB of data per process. I
leave you to digest it as I have yet to use a machine with sufficient >1Gb
RAM so have not looked into it further!

Martin

taken from: http://www.unisysworld.com/monthly/2002/01/xpdefrag.shtml

"Win2K addresses scalability in several ways. First, Win2K gives to
memory-intensive applications the means to use larger amounts of virtual and
physical memory than was possible in NT 4.0. How does more memory help an
application's scalability? Most server applications must quickly process
large amounts of data to perform well. For example, for a database server to
scale, the server must handle large databases. Because accessing disks is
slow compared with accessing main memory, a server performs best when the
data it must access for a database query is located, or cached, in physical
memory. NT (and Win2K) is a 32-bit OS that divides its 4GB of virtual memory
that is addressable with 32 bits into a lower half, in which NT assigns to
applications, and an upper half, where OS and device-driver code and data
reside. Thus, NT 4.0 effectively limits an application to managing at most
2GB of data (3GB with the /3GB boot.ini switch on NT Server, Enterprise
Edition-NTS/E). A Win2K enhancement, Address Windowing Extensions (AWE-some
Microsoft marketing literature refers to AWE as Advanced Windowing
Extensions), lets an application manage much more data.

AWE consists of four APIs that applications use to allocate and deallocate
physical memory and to obtain references, or windows, in their address space
to portions of physical memory. For example, on a system with 4GB of
physical memory, a database application might allocate the majority of the
memory for its cache. The application then creates windows to the portions
of the cache that it must access as it processes database queries. When a
query completes, the application closes the windows it created. Figure 1,
page 46, shows an example of an application that has allocated physical
memory and defined a window to a portion of the physical memory.

Intel recently introduced x86 processors and motherboards that support
Physical Address Extension (PAE), a mechanism that lets OSs and applications
access more than 4GB of physical memory, even though the processors still
use 32-bit virtual addressing. PAE uses 36-bit physical addressing to
support up to 64GB of physical memory, so an application using the AWE APIs
can create data caches that are close to 16 times as large as the cache
sizes possible in NT 4.0. At press time, Microsoft plans to make the AWE
APIs available for all versions of Win2K (i.e., Win2K Professional-Win2K

Page 5 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2741
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=15317&goto=29767#msg_29767
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29767
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Pro, Win2K Advanced Server-Win2K AS, and Win2K Datacenter
Server-Datacenter). However, Win2K Pro and Win2K Server will support only as
much as 4GB of physical memory. Win2K AS will support as much as 8GB of
physical memory, and Datacenter will support as much as 64GB of physical
memory."

--
--
Martin Downing,
Clinical Research Physicist,
Grampian Orthopaedic RSA Research Centre,
Woodend Hospital, Aberdeen, AB15 6LS.
Tel. 01224 556055 / 07903901612
Fax. 01224 556662

m.downing@abdn.ac.uk

"Peter Mason" <p.mason@syd.dem.csiro.au> wrote in message
news:Kh9k8.3$iT2.4574@news0.optus.net.au...
> "Mark Rivers" <rivers@cars.uchicago.edu> wrote:
> <...>
>> That thread is not quite what I'm looking for. It implies that IDL
should
>> be able to allocate 2GB under NT 4.0. However, I have machines with 1GB
> of
>> RAM and 3GB of virtual memory, but the maximum memory IDL can allocate
is
>> almost exactly 1GB. I know I remember seeing a message that said that
>> Visual C++ has a compiler or linker switch to control the maximum amount
> of
>> heap space that an application can use. The message said that the
default
>> is 1GB, and it can be raised to 2GB.
>>
>> I want to write a simple C program to test this, seeing if I can
malloc()
>> more than 1GB in a Windows application. If so, then the next step is to
>> twist RSI's arm to build the next minor release of IDL for Windows with
> this
>> switch. In my current application the difference between 1GB and 2GB is
>> very significant.
>>
>> The longer-term solution is 64-bit IDL on the Itanium processors and
> 64-bit
>> Linux or Windows.
>>
>> Mark

Page 6 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> Hi Mark,
>
> I think that I might have posted the message that you mean. The post was
> sent by a previous version of this particular product (of society) that
was
> even more ignorant than the current version, believe it or not. (Even
the
> current version - Peter Mason version 43.2b - needs a BS flush to work
> properly.)
> But to get to the point...
> In my previous post I think I mentioned that I didn't have a PC with
> sufficient clout to test large allocations. That is still the case.
But
> I have done some actual digging this time to try to figure out how the
> Visual C heap works. Documentation on the nitty-gritty is scarce in
parts,
> but I think I have the general idea.
>
> According to the CRT source code (heapinit.c), VC versions 5 and 6 create
a
> win32 heap for their allocations.
> They create this heap with a maximum size of 0. In other words, this is
a
> growable Win32 heap. But if you read the "PlatSDK" entry for
HeapCreate()
> you'll see that even a growable heap like this will not deal with an
> allocation of 0x7FFF8 bytes (roughly half a megabyte) or more itself.
> Reportedly, such allocations are passed on to the Win32 function
> VirtualAlloc().
> If anything can allocate a large block of memory in Win32, I would think
> that it would have to be VirtualAlloc().
> If you have the "memory" (RAM + page file), then I suspect that the only
> thing that would prevent you from allocating the bulk of the accessable
2GB
> address space in one go, IN A VC PROGRAM, is the fragmentation of this
> address space. Unfortunately, such fragmentation is quite likely.
There
> might be some loaded DLLs (e.g., that pesky MFC DLL) or other allocations
> that are chopping it up in such a way that there just isn't a single free
> block much greater than 1GB. (On the other hand, I think that it is
> unlikely that you would need a single huge, contiguous slab of memory in
> your program?)
>
> I suggest that a basic test of your computer's address space would be to
> write a small stand-alone executable in C that used VirtualAlloc() to
> attempt the allocation of about 1.5GB of memory.
> A more realistic test (assuming that you are working with a number of

Page 7 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

arrays
> and stuff) would be to try several allocations (like maybe 10-100MB each)
> totalling to about 1.7 GB or so.
>
> If you can allocate over 1GB in a stand-alone executable, then (as you
point
> out) the implication is that there is something that IDL is doing that is
> spoiling things. Some years back I when I was using Windows 95, I
noticed
> that IDL was using the "SmartHeap" memory manager on this platform. They
> might still be using a product like this, or they might have written their
> own memory-management routines. If so, a wild guess is that this
software
> might be reserving (but not necessarily committing) slabs of the address
> space for its heaps.
> As far as trying things out *here* is concerned, I'm not really clear on
how
> calling malloc() inside a DLL attached to IDL would work. (A DLL doesn't
> have its own stack or heap, reportedly.) But I would think that calling
> VirtualAlloc() from within the DLL would bypass anything that IDL is doing
> and allow you to test your PC's address space.
>
> A final suggestion: I don't know what the deal is with Windows 2000, but
> (reportedly) if you have Windows NT4 *SERVER*, Enterprise Edition rather
> than Windows NT Workstation, there's a boot-time option to get a 3GB user
> address space instead of a 2GB one. It might be worth your while to try
> this out.
>
>
> Hope this helps,
> Peter Mason (version 43.2 beta)
>
>

Subject: Re: Visual C++ compiler option for >1GB of memory
Posted by Rick Towler on Thu, 14 Mar 2002 23:38:12 GMT
View Forum Message <> Reply to Message

>> ...Even the current version - Peter Mason version 43.2b - needs a BS
>> flush to work properly...
>
> b?

I would have to agree with Peter.

I don't know how anyone could get beyond the beta stage. As a younger man,
my buglist may be short but my feature list is quite long. As I age I am

Page 8 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2728
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=15317&goto=29766#msg_29766
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29766
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

working hard at that feature list, but little bugs are creeping in. I may
never be ready for my "official release".

-Rick

Page 9 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

