
Subject: Re: Rotation of 3D image in Object Graphics
Posted by Karl Schultz on Fri, 12 Apr 2002 14:38:30 GMT
View Forum Message <> Reply to Message

"Akhila" <idlfreak@yahoo.com> wrote in message
news:b1ad7b05.0204111547.3c64146a@posting.google.com...
> HI,
> I've written the code to perform rotation. I used IDLgrModel->Rotate
> property. But it doesn't do what i need to. Can anybody tell me why
> this is happening and what should i do to obtain a 3D rotation of the
> image.
> Thanks for any help.
>
> Cheers,
> Akhila.

IDLgrImage objects don't rotate in the way you are expecting them to here.
The location of the image corners are affected by a model transform, but the
image is always drawn in a box whose sides are parallel to the window sides.

The docs say:

An image object represents a mapping from a two-dimensional array of data
values to a two dimensional array of pixel colors, resulting in a flat
2D-scaled version of the image, drawn at Z = 0.
The image object is drawn at Z =0 and is positioned and sized with respect
to two points:

p1 = [LOCATION(0), LOCATION(1), 0]

p2 = [LOCATION(0) + DIMENSION(0), LOCATION(1) + DIMENSION(1), 0].

where LOCATION and DIMENSION are properties of the image object. These
points are transformed in three dimensions, resulting in screen space points
designated as p1' and p2'. The image data is drawn on the display as a 2D
image within the 2D rectangle defined by (p1'[0], p1'[1] - p2'[0], p2'[1]).
The 2D image data is scaled in 2D (not rotated) to fit into this projected
rectangle and then drawn with Z buffering disabled

So, if you really want to rotate the image, you can texture map it onto a
polygon. The code below, modified from yours, does this. I also changed it
to roate around the Z axis.

The other option is to rotate your data before putting it into the image
object.

Karl

Page 1 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3264
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=15493&goto=30255#msg_30255
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=30255
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ;--- --------------

PRO rotation_event, event

Widget_Control, event.top, Get_UValue = state
state.oWindow -> Draw, state.oView

END

 ;--- --------------

PRO rotateleft_event, event

Widget_Control, event.top, Get_UValue = info
info.oModel->rotate, [0,0,1], 5
info.oWindow -> Draw, info.oView
Widget_Control, event.top, Set_UValue = info, /No_Copy

END

 ;--- --------------

PRO rotation

filename = FILEPATH(Subdirectory = ['examples', 'data'], 'head.dat')
OPENR, lun, filename, /GET_LUN
data = BYTARR(80,100,57)
READU, lun, data
FREE_LUN,lun
SHADE_VOLUME, data, 50, v, p, /LOW, /VERBOSE
SCALE3, XRANGE = [0,80], YRANGE = [0,100], ZRANGE = [0,57]
image = POLYSHADE(v,p, /T3D)

xsize = 512
ysize = 512

tlb = Widget_Base(Title='Image Window/Leveling Example', Column=1,$
MBar=menuID, Base_Align_Center=1)
trb = Widget_base(tlb, /Row)
Button7 = Widget_Button(trb, VALUE = 'Rotate Left', UVALUE = $
'rotateleft', Event_Pro = 'rotateleft_event')
drawID = Widget_Draw(tlb, XSize=xsize, YSize=ysize, /BUTTON_EVENTS, $
/EXPOSE_EVENTS, retain = 0, GRAPHICS_LEVEL = 2)

Page 2 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Widget_Control, tlb, /Realize
Widget_Control, drawID, Get_Value=oWindow

sclimage = Bytscl(image, Min = displayMin, Max = displayMax)
oImage = Obj_New('IDLgrImage', image)
oPoly = obj_new('idlgrpolygon', [0,400,400,0],[0,0,400,400],
TEXTURE_MAP=oImage, $
 color=[255,255,255], TEXTURE_COORD=[[0,0],[1,0],[1,1],[0,1]])
oView = Obj_New('IDLgrView', VIEWPLANE_RECT = [0,0,512,512], COLOR = $
[0,0,0], PROJECTION = 2)
oModel = Obj_New('IDLgrModel')
oModel -> Add, oPoly
oView -> Add, oModel
oWindow -> Draw, oView

info = { oModel:oModel, $
oView:oView, $
oWindow:oWindow}

Widget_Control, tlb, Set_UValue=info, /No_Copy

XManager, 'rotation', tlb, /No_Block

END

Subject: Re: Rotation of 3D image in Object Graphics
Posted by G Karas on Fri, 12 Apr 2002 18:47:52 GMT
View Forum Message <> Reply to Message

very good answer..

i would also like to point out that, in my opinion,
3D rotation of objects is supplied for display purposes
and not for any serious volume rotations.. i did not see
any interpolation options in the objects.. and that could
be a major drawback with partial volume effects in
medical imaging.

cheers!

Giorgos
"Karl Schultz" <kschultz@devnull.researchsystems.com> wrote in message
news:a96rh3$j41$1@news.rsinc.com...
>
> "Akhila" <idlfreak@yahoo.com> wrote in message
> news:b1ad7b05.0204111547.3c64146a@posting.google.com...
>> HI,

Page 3 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4269
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=15493&goto=30250#msg_30250
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=30250
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> I've written the code to perform rotation. I used IDLgrModel->Rotate
>> property. But it doesn't do what i need to. Can anybody tell me why
>> this is happening and what should i do to obtain a 3D rotation of the
>> image.
>> Thanks for any help.
>>
>> Cheers,
>> Akhila.
>
> IDLgrImage objects don't rotate in the way you are expecting them to here.
> The location of the image corners are affected by a model transform, but
the
> image is always drawn in a box whose sides are parallel to the window
sides.
>
> The docs say:
>
> An image object represents a mapping from a two-dimensional array of data
> values to a two dimensional array of pixel colors, resulting in a flat
> 2D-scaled version of the image, drawn at Z = 0.
> The image object is drawn at Z =0 and is positioned and sized with respect
> to two points:
>
> p1 = [LOCATION(0), LOCATION(1), 0]
>
> p2 = [LOCATION(0) + DIMENSION(0), LOCATION(1) + DIMENSION(1), 0].
>
> where LOCATION and DIMENSION are properties of the image object. These
> points are transformed in three dimensions, resulting in screen space
points
> designated as p1' and p2'. The image data is drawn on the display as a 2D
> image within the 2D rectangle defined by (p1'[0], p1'[1] - p2'[0],
p2'[1]).
> The 2D image data is scaled in 2D (not rotated) to fit into this projected
> rectangle and then drawn with Z buffering disabled
>
>
> So, if you really want to rotate the image, you can texture map it onto a
> polygon. The code below, modified from yours, does this. I also changed
it
> to roate around the Z axis.
>
> The other option is to rotate your data before putting it into the image
> object.
>
> Karl
>
>

Page 4 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>
> ;--- --------------
>
> PRO rotation_event, event
>
> Widget_Control, event.top, Get_UValue = state
> state.oWindow -> Draw, state.oView
>
> END
>
> ;--- --------------
>
> PRO rotateleft_event, event
>
> Widget_Control, event.top, Get_UValue = info
> info.oModel->rotate, [0,0,1], 5
> info.oWindow -> Draw, info.oView
> Widget_Control, event.top, Set_UValue = info, /No_Copy
>
> END
>
> ;--- --------------
>
> PRO rotation
>
> filename = FILEPATH(Subdirectory = ['examples', 'data'], 'head.dat')
> OPENR, lun, filename, /GET_LUN
> data = BYTARR(80,100,57)
> READU, lun, data
> FREE_LUN,lun
> SHADE_VOLUME, data, 50, v, p, /LOW, /VERBOSE
> SCALE3, XRANGE = [0,80], YRANGE = [0,100], ZRANGE = [0,57]
> image = POLYSHADE(v,p, /T3D)
>
> xsize = 512
> ysize = 512
>
> tlb = Widget_Base(Title='Image Window/Leveling Example', Column=1,$
> MBar=menuID, Base_Align_Center=1)
> trb = Widget_base(tlb, /Row)
> Button7 = Widget_Button(trb, VALUE = 'Rotate Left', UVALUE = $
> 'rotateleft', Event_Pro = 'rotateleft_event')
> drawID = Widget_Draw(tlb, XSize=xsize, YSize=ysize, /BUTTON_EVENTS, $
> /EXPOSE_EVENTS, retain = 0, GRAPHICS_LEVEL = 2)
>
> Widget_Control, tlb, /Realize
> Widget_Control, drawID, Get_Value=oWindow

Page 5 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> sclimage = Bytscl(image, Min = displayMin, Max = displayMax)
> oImage = Obj_New('IDLgrImage', image)
> oPoly = obj_new('idlgrpolygon', [0,400,400,0],[0,0,400,400],
> TEXTURE_MAP=oImage, $
> color=[255,255,255], TEXTURE_COORD=[[0,0],[1,0],[1,1],[0,1]])
> oView = Obj_New('IDLgrView', VIEWPLANE_RECT = [0,0,512,512], COLOR = $
> [0,0,0], PROJECTION = 2)
> oModel = Obj_New('IDLgrModel')
> oModel -> Add, oPoly
> oView -> Add, oModel
> oWindow -> Draw, oView
>
> info = { oModel:oModel, $
> oView:oView, $
> oWindow:oWindow}
>
> Widget_Control, tlb, Set_UValue=info, /No_Copy
>
> XManager, 'rotation', tlb, /No_Block
>
> END
>
>
>

Page 6 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

