Subject: Image analysis and ring identification Posted by Rachel Pepper on Wed, 17 Apr 2002 13:55:58 GMT

View Forum Message <> Reply to Message

I am a fairly new IDL user trying to use image analysis to determine particle positions in my images. After filtering the images, they appear to be bright rings around a dark center. I was wondering if anyone knew a routine to fit these sorts of images to a circle so that the center of the ring could be determined. Thanks for any help!

Rachel

Subject: Re: Image analysis and ring identification Posted by Rachel Pepper on Thu, 18 Apr 2002 18:47:41 GMT View Forum Message <> Reply to Message

Sorry to be so confusing! I want the center of the circle (ie the bright ring) and the bright spots are messing up the centroid-based method (James is right).

Rachel

>

David Fanning wrote:

- > James Kuyper (kuyper@gscmail.gsfc.nasa.gov) writes:
- >> Yes, but I didn't get the impression that he wants to find the bright
- >> spot. He asked how to determine the center of the circle, and complained
- >> about the fact that the bright spot would mess up the centroid-based
- >> method of calculating the center, because the bright spot was off-center.
- > Isn't language odd? I thought she asked how to find the
- > center of the ring, but then realized she wasn't interested
- > in the center, but in the bright spot, which wasn't necessarily
- > in the center. I think she might be able to have her cake
- > and eat it too, depending upon the values she uses to
- > calculate the centroid. In fact, she might even learn
- > something fascinating about her rings by measuringg how
- > the centroid changes between the two different calculations.
- > But, hang on a minute! We don't have to be Aristotle and
- > his friends arguing endlessly about how many teeth a
- > horse has, we can ask the source. Rachel, what in the
- > world are you asking about?
- > Cheers,
- > David

- > --
- > David W. Fanning, Ph.D.
- > Fanning Software Consulting
- > Phone: 970-221-0438, E-mail: david@dfanning.com
- > Coyote's Guide to IDL Programming: http://www.dfanning.com/
- > Toll-Free IDL Book Orders: 1-888-461-0155

```
Subject: Re: Image analysis and ring identification
Posted by Karsten Rodenacker on Fri, 19 Apr 2002 07:14:38 GMT
View Forum Message <> Reply to Message
```

Without proposing completly ready written routines. Maybe you do:

- 1. Contour with path_xy on you (binary) image. You get pathes for the outer and inner border (thers is a flag in path info)
- 2. Take the outer border path say xy from one 'ring' and calculate a normalized contour path, by:

```
nxy=fft_norcur(xy,centr=av,size=sz,perim=p)
```

as far as I remind me in av you will find the centroid coordinates, in sz the radius and in p the perimeter.

```
FUNCTION sh_dist, xy
  L = \operatorname{sqrt}(\operatorname{sh\_diff}(\operatorname{reform}(xy[0, *]))^2 + 
        sh_diff(reform(xy[1, *]))^2)
  return,L
end
FUNCTION fft_norcur, xy, CENTROID=cav, FACTOR=av, SIZE=sz, PERIMETER=p
  dim=(size(xy))[1]
  n=(size(xy))[2]
  d=sh dist(xy)
  vd=fltarr(dim,n)
  FOR i=0,dim-1 DO vd[i,*]=d
  cav=total(xy*vd,2)/total(vd,2)
  oxy=xy
  oxy[0,*]=reform(xy[0,*])-cav[0]
  oxy[1,*]=reform(xy[1,*])-cav[1]
  p=total(d)
  tt=oxy[0,*]^2+oxy[1,*]^2
  sz=sqrt(total(tt))
  av=total(sqrt(tt)*d)/p
  return, oxy/av
END
```

Regards

Rachel Pepper wrote:

- > I am a fairly new IDL user trying to use image analysis to determine
- > particle positions in my images. After filtering the images, they
- > appear to be bright rings around a dark center. I was wondering if
- > anyone knew a routine to fit these sorts of images to a circle so that
- > the center of the ring could be determined. Thanks for any help!

> > Rachel

> >

> --Karsten Rodenacker ()

-----:-)

D-85758 Oberschleissheim Postfach 11 29

Tel: +49 89 31873401 | FAX: ...3369 | rodena@gsf.de |

Karsten@Rodenacker.de

http://www.gsf.de/ibb/homepages/rodenacker

Subject: Re: Image analysis and ring identification Posted by Jonathan Joseph on Mon, 22 Apr 2002 18:56:29 GMT View Forum Message <> Reply to Message

How large are these rings that you are talking about?

I have some IDL code that will fit an ellipse to a group of points. It requires at least 6 input points. The center is readily available.

I hesitate to just post it because it's not my own code.
I found the code on the web written in java and took the bits that were relevant to me and converted them to IDL. It's publicly available code - but very few comments, no warranty, etc. I believe the original author's name is Maurizio Pilu (see http://vision.dai.ed.ac.uk/maurizp/ElliFitDemo/ for a demo)

If it looks useful, I can post my IDL code.

-Jonathan

Rachel Pepper wrote:

>

- > Sorry to be so confusing! I want the center of the circle (ie the bright ring)
- > and the bright spots are messing up the centroid-based method (James is right).
- > Rachel

```
>
  David Fanning wrote:
>
>> James Kuyper (kuyper@gscmail.gsfc.nasa.gov) writes:
>>
>>> Yes, but I didn't get the impression that he wants to find the bright
>>> spot. He asked how to determine the center of the circle, and complained
>>> about the fact that the bright spot would mess up the centroid-based
>>> method of calculating the center, because the bright spot was off-center.
>>
>> Isn't language odd? I thought she asked how to find the
>> center of the ring, but then realized she wasn't interested
>> in the center, but in the bright spot, which wasn't necessarily
>> in the center. I think she might be able to have her cake
>> and eat it too, depending upon the values she uses to
>> calculate the centroid. In fact, she might even learn
>> something fascinating about her rings by measuringg how
>> the centroid changes between the two different calculations.
>>
>> But, hang on a minute! We don't have to be Aristotle and
>> his friends arguing endlessly about how many teeth a
>> horse has, we can ask the source. Rachel, what in the
   world are you asking about?
>>
>> Cheers,
>>
>> David
>> David W. Fanning, Ph.D.
>> Fanning Software Consulting
>> Phone: 970-221-0438, E-mail: david@dfanning.com
>> Coyote's Guide to IDL Programming: http://www.dfanning.com/
>> Toll-Free IDL Book Orders: 1-888-461-0155
```