
Subject: Memory question by a newbie
Posted by patt on Fri, 02 Aug 2002 20:54:11 GMT
View Forum Message <> Reply to Message

I am a newbie to IDL and am hoping for some advice on memory issues.
My programm reads 10 files and places the information (floating point)
into 10 different 2D arrays. The arrays are about 5000 columns by
6000 rows. Each array is subject to simple mathematical manipulation
that results in a new 2D array. So, I read 10 files and create 10 2D
arrays. These 10 arrays are intermediate arrays that are used to
create a final 2D array. Well, you can probably figure out that I ran
out of memory. I read up on memory problems with IDL and it seems
like this is the way life is in IDL. The way I solved the memory
problem was to break up the files into sections and work with those
sections, then read the file again only moving the file pointer to the
end of previous section. I used the update parameter of the read
function to create the final array, so each section is added to the
final array file. I am wondering if there is a better work around? I
found the IDL_MAKETEMPARRAY function but I don't understand what it
does and am not sure if that is the answer. Any other ideas? Pat

Subject: Re: Memory question by a newbie
Posted by Pete[1] on Sun, 04 Aug 2002 23:33:09 GMT
View Forum Message <> Reply to Message

Hi Pat,

Now *here's* a good candidate for memory-mapping.

If you are using a Windows platform, read my recent post under "Memory
headaches" about the availability of memory-mapped-file DLMs. If you are
using Unix, there's Eric Korpela's VARRAY:
http://albert.ssl.berkeley.edu/~korpela/mmap/

Although you are already past the 1GB mark with your inputs alone, you have
ten input arrays and that's much easier to cope with than one single, huge
array. Nonetheless you are still going to have to be careful about how you
go about it if you're working with Windows NT or 2000 - you could run out of
suitably large chunks of address space if you aren't lucky. (I don't know
how big your output is - hopefully 115MB like the others? If several
hundred MB, you will probably have to do this job in stages on Windows.)
Probably the best way to go about it is to run your program in as fresh and
lean an IDL session as possible, and allocate or memory-map the largest
arrays first (i.e., your output array and your ten inputs, before any other
largish arrays that you might be using). You will also have to be very
careful in the way you do your calculations. Learn the ways of IDL's
TEMPORARY function and efficient array insertion (e.g., using expressions

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4383
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16041&goto=31570#msg_31570
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=31570
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3034
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16041&goto=31704#msg_31704
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=31704
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

like A[0,I]=B[*,J] rather than A[*,I]=B[*,J]) to minimise temporary-variable
overheads in array arithmetic. These overheads are usually impossible to
avoid entirely in IDL, but they can be kept down. They can occasionally be
show-stoppers when working with huge arrays if they aren't dealt with
properly. (Note that TEMPORARY(MMF_VAR) will essentially invalidate a
memory-mapped-file variable MMF_VAR for subsequent access, though, and you
will have to re-map it to use it later. So you might want to mix and match
memory mapping with normal arrays or IDL's ASSOC() and / or carefully
consider the order in which you do things.)

Good luck,
Cheers
Peter Mason

"Pat" <patt@cnr.usu.edu> wrote in message
news:4928c7c9.0208021254.50d3f519@posting.google.com...
> I am a newbie to IDL and am hoping for some advice on memory issues.
> My programm reads 10 files and places the information (floating point)
> into 10 different 2D arrays. The arrays are about 5000 columns by
> 6000 rows. Each array is subject to simple mathematical manipulation
> that results in a new 2D array. So, I read 10 files and create 10 2D
> arrays. These 10 arrays are intermediate arrays that are used to
> create a final 2D array. Well, you can probably figure out that I ran
> out of memory. I read up on memory problems with IDL and it seems
> like this is the way life is in IDL. The way I solved the memory
> problem was to break up the files into sections and work with those
> sections, then read the file again only moving the file pointer to the
> end of previous section. I used the update parameter of the read
> function to create the final array, so each section is added to the
> final array file. I am wondering if there is a better work around? I
> found the IDL_MAKETEMPARRAY function but I don't understand what it
> does and am not sure if that is the answer. Any other ideas? Pat

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

