
Subject: mesh clipping
Posted by lyubo on Sun, 25 Aug 2002 19:21:48 GMT
View Forum Message <> Reply to Message

I have three planes and a mesh. The mesh represents an object which I want
to cut with the planes and show either of the remaining parts (like
thecutting
planes of IDLgrVolume). To do that I clip the mesh to all of the planesand
take the union of the remaining meshes, but it takes a lot of time to
mergethem.

In general, can I draw a plane in IDL which will cover the front part of the
mesh without clipping it, or is there any other way of doing that?

Also, why IDLgrVolume is so slow?

Thanks,

Lyubo

Subject: Re: mesh clipping
Posted by Rick Towler on Wed, 28 Aug 2002 16:24:25 GMT
View Forum Message <> Reply to Message

"lyubo" <lzagorch@cs.wright.edu> wrote

> Rick, you were right. I really want to slice the mesh up interactively
> and that's why I was trying to clip it to a plane. I guess alpha blending
> will be faster but the question that I have here is how can I use alpha
> blending with a mesh? I thought that I can apply alpha blending only to
> texture mapped polygons, by using an alpha image as texture. With
> the mesh I don't have any texture. I will try to find examples on the net,
> I just wanted to thank you for your reply.

Ahh, you have a wire mesh....

You are *mostly* correct in thinking that you need to work with texture
mapped solid polygons to use alpha blending. In IDL 5.5 there is a bug that
allows you to texture wireframe models. But, before we go there, you need
to texture your polygon first...

For now, work with a solid polygon. Let's assume you want to draw your
polygon in grey. Create a instance of IDLgrImage with this texture data:

imagedat = [[180,180,180,255],[180,180,180,0]]

Page 1 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4255
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16185&goto=31904#msg_31904
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=31904
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2728
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16185&goto=31963#msg_31963
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=31963
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Use this image object to texture your polygon.

The trick will be setting up the texture coordinates. Your texcoords array
will be a 2xn array where n is the number of verticies in your mesh and each
coordinate pair maps a pixel in your image to a vertex in your mesh. So,
for verticies you want "on" you will give it a texcoord of [0,0] and for
verts you want off, [0,1] (or is it [1,0]? Well, you get the idea).

There are a few things to watch out for. One is that if I remember
correctly, I don't actually use texcoords of 0 or 1 to assign pixels at the
edge of my texture. I ended up using 0.001 and 0.999. Unfortunatly I
can't remember why...

A second issue will be that you will not have a cleanly defined edge along
your slices. IDL will blend from opaque to transparent giving you a "soft"
edge. This may be a result of the type of shading used though..

And then there is the order in which the polygon is drawn. It has to be
drawn back to front. And if you rotate it 180 degrees you draw it back to
front, which turns out to be front to back. I usually end up slicing my
mesh into a +z portion and -z portion and then keep track of where the
camera is and flip the two objects in my model when the camera crosses the
xy plane.

Ahh, the wire mesh... Like I said, IDL 5.5 has a bug where wire mesh
polygons can be textured. It just doesn't work as expected. But you should
be able to get it to work. Start with the solid and get that working...

> As far as my graphics adapter, I use Nvidia GeForce3 on a P4 2.0GHz
> dual processor with 512Mb Ram platform. Which graphic adapters
> support rendering of volumes?

That I can't answer. We don't do volumes so I haven't ever investigated
this. I can tell you that the high end consumer cards like your GF3 are
optimized for gaming. They concentrate on fill rate first, then polygon
count. If there is any support for volumes it is WAY down the list.

-Rick

Subject: Re: mesh clipping
Posted by David Fanning on Wed, 28 Aug 2002 17:14:03 GMT
View Forum Message <> Reply to Message

Rick Towler (rtowler@u.washington.edu) writes:

Page 2 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16185&goto=31962#msg_31962
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=31962
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> I ended up using 0.001 and 0.999. Unfortunatly I
> can't remember why...

Experience, no doubt. :-)

Cheers,

David

--
David W. Fanning, Ph.D.
Fanning Software Consulting, Inc.
Phone: 970-221-0438, E-mail: david@dfanning.com
Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

Subject: Re: mesh clipping
Posted by Karl Schultz on Wed, 28 Aug 2002 23:09:16 GMT
View Forum Message <> Reply to Message

"Rick Towler" <rtowler@u.washington.edu> wrote in message
news:akitis$20o6$1@nntp6.u.washington.edu...
>
> "lyubo" <lzagorch@cs.wright.edu> wrote
>
>> Rick, you were right. I really want to slice the mesh up interactively
>> and that's why I was trying to clip it to a plane.

One question to ask is if you want to actually clip your model - the data,
or just provide a visual clip.

You can easily clip the model with MESH_CLIP, but I think the OP said in the
first posting that merging them was too slow. Would it be possible to avoid
the merge and just display the clipped pieces? Is it important to merge the
pieces for some reason??? I don't know your data, but I can imagine many
circumstances where you can just display each part in its own IDLgrPolygon
and end up with something that looks the same as a single merged mesh.
Hopefully your data is small enough so that MESH_CLIP is still fast enough
to be interactive.

Visually, there is very little difference between displaying a (wire) mesh
with one or with several IDLgrPolygon objects.

For example, if you had one vertex list and one connectivity list with just
triangles in it:

Page 3 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3264
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16185&goto=31957#msg_31957
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=31957
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

verts = FLTARR(3,100) ; 100 verts
conn = LONARR(4 * 50) ; 50 triangles

; fill in arrays
...
; create objects

oPoly1 = OBJ_NEW('IDLgrPolygon', verts, conn[0:99])
oPoly2 = OBJ_NEW('IDLgrPolygon', verts, conn[100:*])

The visual appearance of these two meshes should be pretty indistinguishable
from a single mesh formed from the entire 'conn' list with a couple of
exceptions. You'll probably see a seam if you are doing filled polygons
with smooth shading. The seam would be easier to notice if the normals of
the polygons on either side of the seam are very different from each other.
But if you are doing wire frame, you should be alright. And if you used
alpha blending, the order makes a difference, as Rick is pointing out.

And yes, you can use the viewport and Z clip planes to do some visual
clipping, but that would be pretty limited.

>> I guess alpha blending
>> will be faster but the question that I have here is how can I use alpha
>> blending with a mesh? I thought that I can apply alpha blending only to
>> texture mapped polygons, by using an alpha image as texture. With
>> the mesh I don't have any texture. I will try to find examples on the
net,
>> I just wanted to thank you for your reply.
>
> Ahh, you have a wire mesh....
>
> You are *mostly* correct in thinking that you need to work with texture
> mapped solid polygons to use alpha blending. In IDL 5.5 there is a bug
that
> allows you to texture wireframe models. But, before we go there, you need
> to texture your polygon first...
>
> For now, work with a solid polygon. Let's assume you want to draw your
> polygon in grey. Create a instance of IDLgrImage with this texture data:
>
> imagedat = [[180,180,180,255],[180,180,180,0]]
>
> Use this image object to texture your polygon.
>
> The trick will be setting up the texture coordinates. Your texcoords
array
> will be a 2xn array where n is the number of verticies in your mesh and

Page 4 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

each
> coordinate pair maps a pixel in your image to a vertex in your mesh. So,
> for verticies you want "on" you will give it a texcoord of [0,0] and for
> verts you want off, [0,1] (or is it [1,0]? Well, you get the idea).
>
> There are a few things to watch out for. One is that if I remember
> correctly, I don't actually use texcoords of 0 or 1 to assign pixels at
the
> edge of my texture. I ended up using 0.001 and 0.999. Unfortunatly I
> can't remember why...
>
> A second issue will be that you will not have a cleanly defined edge along
> your slices. IDL will blend from opaque to transparent giving you a
"soft"
> edge. This may be a result of the type of shading used though..
>
> And then there is the order in which the polygon is drawn. It has to be
> drawn back to front. And if you rotate it 180 degrees you draw it back to
> front, which turns out to be front to back. I usually end up slicing my
> mesh into a +z portion and -z portion and then keep track of where the
> camera is and flip the two objects in my model when the camera crosses the
> xy plane.

I think that this is going to be a real show-stopper if we are talking about
general meshes. In the most general sense, you'd have to sort your vertices
by VIEWPORT Z (not model Z) if the orientation of the model changes for a
frame. (By "sort", I mean arrange your connectivity list so that the
polygons that are most distant from the viewer are drawn first.) Unless the
data is constrained to be something more simple, like a sphere or being
convex, this is a very difficult problem to solve.

We got away with this in the pimento case because it was a simple sphere.

I've seen some apps chop models into 8 "octants" and change the order they
are drawn based on orientation to the viewer, which I guess is a pretty
decent approximation.

But in general, the alpha approach is going to be a pretty hard way to do
this. I'd try to use the MESH_CLIP approach. Perhaps you can create a mesh
with very few polygons in it (with MESH_DECIMATE) to use while your user is
sliding a clip plane interactively. When they "let go", display the final
clipped mesh with the original model. There may be other techniques.

>
>
> Ahh, the wire mesh... Like I said, IDL 5.5 has a bug where wire mesh
> polygons can be textured. It just doesn't work as expected. But you
should

Page 5 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> be able to get it to work. Start with the solid and get that working...

This problem is fixed in 5.6. IDL 5.5 did not support texturing point or
line polygons, but if you tried it, the texture coordinates were being
ignored which made this "feature" hard to use. You can do some really cool
things with this in IDL 5.6, if you like modulating colors along a line.

>> As far as my graphics adapter, I use Nvidia GeForce3 on a P4 2.0GHz
>> dual processor with 512Mb Ram platform. Which graphic adapters
>> support rendering of volumes?
>
> That I can't answer. We don't do volumes so I haven't ever investigated
> this. I can tell you that the high end consumer cards like your GF3 are
> optimized for gaming. They concentrate on fill rate first, then polygon
> count. If there is any support for volumes it is WAY down the list.

It is to the point where some companies sell dedicated volume-rendering
graphics adapters that use special hardware for volumetric rendering.
Volumetric rendering is a completely different approach to rendering as
compared to polygonal rendering, in the same way ray-tracing is also
different from polygonal rendering. The volume renderer built into
IDLgrVolume uses a software ray-casting approach to create the image, which
is pretty compute-intensive. OpenGL acceleration has no impact on rendering
IDL volumes, except when blitting the (2D) result to the screen.

Subject: Re: mesh clipping
Posted by lyubo on Sat, 31 Aug 2002 11:14:31 GMT
View Forum Message <> Reply to Message

Hi Karl,

I actually ended up splitting the mesh into 3 different polygons and
displaying them separately, but your post clarified a lot of things. I
can see the seem between different polygons because the mesh is
shaded, but it isn't that bad.

I wasn't able to get the alpha blending working with a shaded mesh
and if I have to rearrange the connectivity list myself I want to stay
away from it. Even if I get it to work I definitely wont be able to cut
the mesh interactively simply because it is a huge mesh. Even if I
decimate it the rearranging will take a long time.

Lyubo

"Karl Schultz" <kschultz@devnull.researchsystems.com> wrote in message
news:akjl6uaok1@news.rsinc.com...

Page 6 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4255
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16185&goto=31925#msg_31925
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=31925
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> "Rick Towler" <rtowler@u.washington.edu> wrote in message
> news:akitis$20o6$1@nntp6.u.washington.edu...
>>
>> "lyubo" <lzagorch@cs.wright.edu> wrote
>>
>>> Rick, you were right. I really want to slice the mesh up interactively
>>> and that's why I was trying to clip it to a plane.
>
> One question to ask is if you want to actually clip your model - the data,
> or just provide a visual clip.
>
> You can easily clip the model with MESH_CLIP, but I think the OP said in
the
> first posting that merging them was too slow. Would it be possible to
avoid
> the merge and just display the clipped pieces? Is it important to merge
the
> pieces for some reason??? I don't know your data, but I can imagine many
> circumstances where you can just display each part in its own IDLgrPolygon
> and end up with something that looks the same as a single merged mesh.
> Hopefully your data is small enough so that MESH_CLIP is still fast enough
> to be interactive.
>
> Visually, there is very little difference between displaying a (wire) mesh
> with one or with several IDLgrPolygon objects.
>
> For example, if you had one vertex list and one connectivity list with
just
> triangles in it:
>
> verts = FLTARR(3,100) ; 100 verts
> conn = LONARR(4 * 50) ; 50 triangles
>
> ; fill in arrays
> ...
> ; create objects
>
> oPoly1 = OBJ_NEW('IDLgrPolygon', verts, conn[0:99])
> oPoly2 = OBJ_NEW('IDLgrPolygon', verts, conn[100:*])
>
> The visual appearance of these two meshes should be pretty
indistinguishable
> from a single mesh formed from the entire 'conn' list with a couple of
> exceptions. You'll probably see a seam if you are doing filled polygons
> with smooth shading. The seam would be easier to notice if the normals of
> the polygons on either side of the seam are very different from each
other.

Page 7 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> But if you are doing wire frame, you should be alright. And if you used
> alpha blending, the order makes a difference, as Rick is pointing out.
>
> And yes, you can use the viewport and Z clip planes to do some visual
> clipping, but that would be pretty limited.
>
>
>>> I guess alpha blending
>>> will be faster but the question that I have here is how can I use
alpha
>>> blending with a mesh? I thought that I can apply alpha blending only
to
>>> texture mapped polygons, by using an alpha image as texture. With
>>> the mesh I don't have any texture. I will try to find examples on the
> net,
>>> I just wanted to thank you for your reply.
>>
>> Ahh, you have a wire mesh....
>>
>> You are *mostly* correct in thinking that you need to work with texture
>> mapped solid polygons to use alpha blending. In IDL 5.5 there is a bug
> that
>> allows you to texture wireframe models. But, before we go there, you
need
>> to texture your polygon first...
>>
>> For now, work with a solid polygon. Let's assume you want to draw your
>> polygon in grey. Create a instance of IDLgrImage with this texture
data:
>>
>> imagedat = [[180,180,180,255],[180,180,180,0]]
>>
>> Use this image object to texture your polygon.
>>
>> The trick will be setting up the texture coordinates. Your texcoords
> array
>> will be a 2xn array where n is the number of verticies in your mesh and
> each
>> coordinate pair maps a pixel in your image to a vertex in your mesh.
So,
>> for verticies you want "on" you will give it a texcoord of [0,0] and for
>> verts you want off, [0,1] (or is it [1,0]? Well, you get the idea).
>>
>> There are a few things to watch out for. One is that if I remember
>> correctly, I don't actually use texcoords of 0 or 1 to assign pixels at
> the
>> edge of my texture. I ended up using 0.001 and 0.999. Unfortunatly I
>> can't remember why...

Page 8 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>> A second issue will be that you will not have a cleanly defined edge
along
>> your slices. IDL will blend from opaque to transparent giving you a
> "soft"
>> edge. This may be a result of the type of shading used though..
>>
>> And then there is the order in which the polygon is drawn. It has to be
>> drawn back to front. And if you rotate it 180 degrees you draw it back
to
>> front, which turns out to be front to back. I usually end up slicing my
>> mesh into a +z portion and -z portion and then keep track of where the
>> camera is and flip the two objects in my model when the camera crosses
the
>> xy plane.
>
> I think that this is going to be a real show-stopper if we are talking
about
> general meshes. In the most general sense, you'd have to sort your
vertices
> by VIEWPORT Z (not model Z) if the orientation of the model changes for a
> frame. (By "sort", I mean arrange your connectivity list so that the
> polygons that are most distant from the viewer are drawn first.) Unless
the
> data is constrained to be something more simple, like a sphere or being
> convex, this is a very difficult problem to solve.
>
> We got away with this in the pimento case because it was a simple sphere.
>
> I've seen some apps chop models into 8 "octants" and change the order they
> are drawn based on orientation to the viewer, which I guess is a pretty
> decent approximation.
>
> But in general, the alpha approach is going to be a pretty hard way to do
> this. I'd try to use the MESH_CLIP approach. Perhaps you can create a
mesh
> with very few polygons in it (with MESH_DECIMATE) to use while your user
is
> sliding a clip plane interactively. When they "let go", display the final
> clipped mesh with the original model. There may be other techniques.
>
>>
>>
>> Ahh, the wire mesh... Like I said, IDL 5.5 has a bug where wire mesh
>> polygons can be textured. It just doesn't work as expected. But you
> should
>> be able to get it to work. Start with the solid and get that working...
>

Page 9 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> This problem is fixed in 5.6. IDL 5.5 did not support texturing point or
> line polygons, but if you tried it, the texture coordinates were being
> ignored which made this "feature" hard to use. You can do some really
cool
> things with this in IDL 5.6, if you like modulating colors along a line.
>
>>> As far as my graphics adapter, I use Nvidia GeForce3 on a P4 2.0GHz
>>> dual processor with 512Mb Ram platform. Which graphic adapters
>>> support rendering of volumes?
>>
>> That I can't answer. We don't do volumes so I haven't ever investigated
>> this. I can tell you that the high end consumer cards like your GF3 are
>> optimized for gaming. They concentrate on fill rate first, then polygon
>> count. If there is any support for volumes it is WAY down the list.
>
> It is to the point where some companies sell dedicated volume-rendering
> graphics adapters that use special hardware for volumetric rendering.
> Volumetric rendering is a completely different approach to rendering as
> compared to polygonal rendering, in the same way ray-tracing is also
> different from polygonal rendering. The volume renderer built into
> IDLgrVolume uses a software ray-casting approach to create the image,
which
> is pretty compute-intensive. OpenGL acceleration has no impact on
rendering
> IDL volumes, except when blitting the (2D) result to the screen.
>
>
>
>

Page 10 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

