Subject: Re: Looking for more ideas on code ...
Posted by Craig Markwardt on Tue, 01 Oct 2002 00:55:25 GMT

View Forum Message <> Reply to Message

jeyadev@wrc.xerox.bounceback.com (Surendar Jeyadev) writes:

| have a question about how best (style and function, if possible!) to
write code for a function that has limits that have to be treated in a
special way. Consider the function

f(x) = sin(x)/x

as an example. Now, if x is always a scalar, then on just tests to see
if it is zero, and then handle that special case using a if .. then ..
else construct. But, what if x can also be scalar? | have the following

>
>
>
>
>
>
>
>
>
> code that works:
>

\%

function sinc, y

if(n_elements(y) eq 1) then begin ;y is a scalar
if(y eq 0.0) then profile = 1.0 else begin
profile = sin(y)/y
endelse
endif else begin ;Y is a vector
zeros = where(y eq 0.0, ind)
if(ind gt 0) then y(zeros) = 1.0e-10 ; set zeroes to a small quantity
profile = sin(y)/y
endelse

profile = profile*profile/a0

return, profile

end

VVVVVVVVVVVVVVVVYVYVYVYVYV

\%

| guess the one can always set
profile(zeros) = 1.0

to handle the more general cases. But, the real question is there
a better way than

VVVVYVYVYVYV

Page 1 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16327&goto=32275#msg_32275
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=32275
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

zeros = where(y eq 0.0, ind)

if(ind gt 0) then y(zeros) = "special values"
notzeros = where(y ne 0.0, ind)

if(ind gt 0) then y(notzeros) = "general definition"

VVVVYV

> | do understand that one should not compare reals, etc., but | will
> clean up the numerics later.

First of all, this is a perfectly good time to compare reals. The
discontinuity only exists at zero, no where else.

Second of all, you can simplify your logic a little, by pre-filling
the array with the "special case:"

profile = y*0 + 1. ;; Tricky way to get array filled with zeroes
wh = where(y NE 0, ct)
profile(wh) = sin(y(wh))/y(wh)

That's not too bad. You can get trickier too, and in fact cheat with
this little doozy, which only works for an even function:

sz = size(y) & isdouble = sz(sz(0)+1) EQ 5
ymin = (machar(double=isdouble)).xmin
yp = abs(y)+ymin

profile = sin(yp)/yp

This will get at maximum only 2 ulps of error, and even then only if
your values of Y are near 10"{-308}. It works by adding a small value
to ABS(Y), so that the sinc evaluation is never exactly equal to zero.
The top two lines are needed to determine correct value to add, float
vs. double. This is a bit too sneaky.

Craig

Craig B. Markwardt, Ph.D. EMAIL: craigmnet@cow.physics.wisc.edu
Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response

Subject: Re: Looking for more ideas on code ...
Posted by JD Smith on Tue, 01 Oct 2002 15:12:12 GMT

View Forum Message <> Reply to Message

On Mon, 30 Sep 2002 17:55:25 -0700, Craig Markwardt wrote:

Page 2 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16327&goto=32269#msg_32269
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=32269
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> jeyadev@wrc.xerox.bounceback.com (Surendar Jeyadev) writes:

>

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>
>>

\%

| have a question about how best (style and function, if possible!) to
write code for a function that has limits that have to be treated in a
special way. Consider the function

f(x) = sin(x)/x

as an example. Now, if x is always a scalar, then on just tests to see
if it is zero, and then handle that special case using a if .. then ..
else construct. But, what if x can also be scalar? | have the following
code that works:

function sinc, y

if(n_elements(y) eq 1) then begin ;Y is a scalar
if(y eq 0.0) then profile = 1.0 else begin
profile = sin(y)/ly

endelse
endif else begin ; 'y is a vector
zeros = where(y eq 0.0, ind)
if(ind gt 0) then y(zeros) = 1.0e-10 ; set zeroes to a small
quantity profile = sin(y)ly
endelse

profile = profile*profile/a0

return, profile

end

| guess the one can always set
profile(zeros) = 1.0

to handle the more general cases. But, the real question is there a
better way than

zeros = where(y eq 0.0, ind)
if(ind gt 0) then y(zeros) = "special values" notzeros = where(y ne
0.0, ind)

Page 3 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> f(ind gt 0) then y(notzeros) = "general definition"

>> | do understand that one should not compare reals, etc., but | will
>> clean up the numerics later.

First of all, this is a perfectly good time to compare reals. The
discontinuity only exists at zero, no where else.

Second of all, you can simplify your logic a little, by pre-filling the
array with the "special case:"

VVVVYVYVYVYV

profile = y*0 + 1. ;; Tricky way to get array filled with zeroes wh

That certainly the canonical "tricky" way to get an array of 1's, and, at
least on my machine, it's actually faster for most array sizes than:

profile=make_array(n_elements(y),/FLOAT,VALUE=1.)

| started to write this to demonstrate how certain tricks like this can be
inefficient, only to find it's actually *more* efficient in most cases.

Hmmph. Live and learn.

JD

Subject: Re: Looking for more ideas on code ...
Posted by jeyadev on Tue, 01 Oct 2002 20:11:20 GMT

View Forum Message <> Reply to Message

In article <onr8fbugea.fsf@cow.physics.wisc.edu>,

Craig Markwardt <craigmnet@cow.physics.wisc.edu> wrote:
>

> jeyadev@wrc.xerox.bounceback.com (Surendar Jeyadev) writes:
>

>>

>>

- S —

>>

>> function sinc, y

>>

>>

>> jf(n_elements(y) eq 1) then begin ;Y is a scalar
>> f(y eq 0.0) then profile = 1.0 else begin

>> profile = sin(y)/y

>> endelse

>> endif else begin ;Y is a vector

>> zeros = where(y eq 0.0, ind)

\%

Page 4 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=887
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16327&goto=32355#msg_32355
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=32355
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> jf(ind gt 0) then y(zeros) = 1.0e-10 ; set zeroes to a small quantity
>> profile = sin(y)ly

>> endelse

>>

>> profile = profile*profile/a0

My mistake there. | am actually after sinc”2 but it
has not caused any harm!

>> return, profile

>>

>> end

>>

>

> Second of all, you can simplify your logic a little, by pre-filling
> the array with the "special case:"

>

> profile =y*0 + 1. ;; Tricky way to get array filled with zeroes
> wh = where(y NE 0, ct)

> profile(wh) = sin(y(wh))/y(wh)

Nice one that, when the only exceptional value is the same for
all "problem" points.

thanks

Surendar Jeyadev jeyadev@wrc.xerox.bounceback.com

Remove 'bounceback’ for email address

Subject: Re: Looking for more ideas on code ...
Posted by Craig Markwardt on Wed, 02 Oct 2002 02:44:28 GMT

View Forum Message <> Reply to Message

JD Smith <jdsmith@as.arizona.edu> writes:

> That certainly the canonical "tricky" way to get an array of 1's, and, at
least on my machine, it's actually faster for most array sizes than:
profile=make_array(n_elements(y),/FLOAT,VALUE=1.)

| started to write this to demonstrate how certain tricks like this can be

>
>
>
>
>
> inefficient, only to find it's actually *more* efficient in most cases.
>

>

Hmmph. Live and learn.

Interesting performance result! | do it because it allows me to

Page 5 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16327&goto=32353#msg_32353
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=32353
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

control the type and dimension of the output array pretty simply. The
effects of the following statement can be pretty subtle:

y =x*0 + 1.

This statement guarantees that Y has the same dimensions as X (except
for trailing unit dimensions darnit). But the other nice thing this
does is guarantee a certain minimum data type for Y.

Because | am adding the floating point value "1.", Y is guaranteed to
be at least floating point. *BUT* if X is double precision, then Y

will be double precision as well. This is a nice way to keep the
internal precision consistent without resorting to the awkward and
error-prone "DOUBLE" keywords that pepper the IDL library.

Craig

Craig B. Markwardt, Ph.D. EMAIL: craigmnet@cow.physics.wisc.edu
Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response

Page 6 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

