Subject: Reducing an array.
Posted by Joe[3] on Mon, 30 Sep 2002 22:23.08 GMT

View Forum Message <> Reply to Message

Hi- I'm somewhat new to IDL and was wondering what the most effiecient way
is to 'OR' all the elements of an array together resulting in a scalar

value. I'm hoping IDL has a built-in way of doing this rather than using a
FOR-LOOP. Similar to how IDL has the TOTAL function which sums all the
elements of an array together. I've used other languagues which allow you

to 'reduce’ arrays to a scalar using an arbitrary function (i.e. Python's

reduce function).

What | am doing is taking a lot of integer data which is either 0's or 1's
and compressing it into the bits of 64-bit unsigned integers. Here is a bit
of sample code:

data =[1,0,0,0,1,1,1,0,1,0,1,0,0, ..., 0, 1, O, 1] ; bunch of data, assume

of elements is multiple of 64

shifts = reverse(indgen(n_elements(data))) MOD 64

compressed_data = ishft(data,shifts)

: here is where | want to take the compressed_data array and make it into a
; bunch (n_elements(data)/64, to be exact) of unsigned 64-bit integers by
OR'ing

; every 64 elements of compressed data togeter

Thanks for any help,
Joe

Subject: Re: Reducing an array.
Posted by Craig Markwardt on Wed, 02 Oct 2002 13:30:56 GMT

View Forum Message <> Reply to Message

"Dick Jackson" <dick@d-jackson.com> writes:

> "Craig Markwardt" <craigmnet@cow.physics.wisc.edu> wrote in message
> news:on65wnysmk.fsf@cow.physics.wisc.edu...

[...]

>> In this case you can use TOTAL() directly. First you REFORM() your
>> data into a 2-d array, 64xN, then then total the 1st dimension. This
>> works because each of your values has only one data bit set, so

>> summing and ORing are equivalent.

>>

>> compressed_data = reform(compressed_data, 64,

> n_elements(compressed_data)/64)

>> result = total(compressed_data, 1)

>>

>> That's it! For JD, | could have combined both statements onto one

Page 1 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4441
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16333&goto=32280#msg_32280
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=32280
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16333&goto=32347#msg_32347
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=32347
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> |ine, but this is more readable.

There's one problem with this, in that Total() returns a Double result

at best (with the /Double keyword), but Joe wanted 64-bit integers. A
64-bit Double value with some bits used as exponent cannot represent as
many distinct values as the 64-bit integer, so we will lose information
here.

Looks to me like this all has to be done in 64-bit integers. I'm sorry |
can't find a *really* elegant solution for you right now, but if your

data array is very large, then a single loop over 64 columns might not
be too inefficient. Here's my best attempt (it does 100000 ints in 2.2
seconds here, fast enough?):

VVVVVVVYVYVYVVYV

Hi Dick--
You are right, TOTAL just won't preserve all the bits of precision.

| like your summation over the 64 bits. A loop with 64 iterations is
a FOR loop not even worth getting worried about. Good job!

By the way, | have found ISHFT to be faster than the exponentiation
operation, but in this case it only seemed to be about 20% faster.

Craig

Craig B. Markwardt, Ph.D. EMAIL: craigmnet@cow.physics.wisc.edu
Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

