Subject: Re: string definition question
Posted by Paul Van Delst[1] on Tue, 14 Jan 2003 18:04:27 GMT

View Forum Message <> Reply to Message

mwvogel wrote:
As my news server refuses my post, I'll paste it here :-)

M

| would try KEYWORD_PRESENT,; with A defined as 'IDL', B as " and C
undefined | get the following :

IDL>A ="IDL' & B =" & PRINT, KEYWORD_SET(A), KEYWORD_SET(B),
KEYWORD_SET(C)

100

VVVVVVVYVYVYVYVYV

| guess that works in routines too.
D'oh! Why didn't | think of that!?
Thanks!

paulv

Mika
i

Mika

"Paul van Delst" <paul.vandelst@noaa.gov> schreef in bericht
news:<3E2432EC.18E46318@noaa.gov>...

>> Hello there,

>> Although I should probably know the answer to this, since all my IDL

>> reference books have

>> peen borrowed, hope you don't mind me asking here.

>> |'m a bit anal about argument checking in IDL. After establishing that the
>> correct number

>> of arguments has been passed using:

>> np_arguments =1

>> |F (N_PARAMS() LT n_arguments) THEN $

>> MESSAGE, 'Invalid number of arguments.’, $

>> INONAME, /NOPRINT

>>

>> My standard method for checking string arguments (like filenames to read)

V VVVVYVYVYV

Page 1 of 13 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16843&goto=33608#msg_33608
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=33608
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> is something

>> |ike:

>> |F (N_ELEMENTS(FileNAME) EQ 0) THEN BEGIN
>> MESSAGE, 'Input FileNAME argument not defined!’, $

>> INONAME, /NOPRINT
>>
>> |F (STRLEN(FileNAME) EQ 0) THEN $

>> MESSAGE, 'Input FileNAME argument not defined!’, $

>> INONAME, /INOPRINT

>> |f | pass a zero-length string, e.g. FileNAME=", the N_ELEMENTS() test
>> passes so | always

>> test for a non-zero string length (it's happened). If | combine the two

>> tests using AND,

>> then if the variable is undefined, the STRLEN() function generates an
>> errors (since its

>> argument must be defined).

>> The above works great, but | have always felt that it should be

>> unnecessary. Is there a

>> one-step method to test that the argument is actually defined AND that the
>> string length

>> js not zero? Would the ARG_PRESENT function be useful here somehow? | read
>> the on-line

>> manual, but | really don't grok the text.

>> Thanks for any info,

>> paulv

>> -- Paul van Delst

>> CIMSS @ NOAA/NCEP/EMC

>> Ph: (301)763-8000 x7274

>> Fax:(301)763-8545

Paul van Delst

CIMSS @ NOAA/NCEP/EMC
Ph: (301)763-8000 x7274
Fax:(301)763-8545

Subject: Re: string definition question
Posted by btupper on Tue, 14 Jan 2003 18:13:41 GMT

View Forum Message <> Reply to Message

On Tue, 14 Jan 2003 10:55:24 -0500, Paul van Delst
<paul.vandelst@noaa.gov> wrote:

> Hello there,

>

> Although | should probably know the answer to this, since all my IDL reference books have
> been borrowed, hope you don't mind me asking here.

Page 2 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4197
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16843&goto=33607#msg_33607
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=33607
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>

> I'm a bit anal about argument checking in IDL. After establishing that the correct number
> of arguments has been passed using:

>
> n_arguments =1

> |F (N_PARAMS() LT n_arguments) THEN $

> MESSAGE, 'Invalid number of arguments.’, $

> INONAME, /INOPRINT

>

>

> My standard method for checking string arguments (like flenames to read) is something
> like:

>

> |F (N_ELEMENTS(FileNAME) EQ 0) THEN BEGIN
> MESSAGE, 'Input FileNAME argument not defined!', $
> INONAME, /NOPRINT

>

> |F (STRLEN(FileNAME)EQO0) THEN $

> MESSAGE, 'Input FileNAME argument not defined!', $
> INONAME, /NOPRINT

>

> If | pass a zero-length string, e.g. FileNAME=", the N_ELEMENTS() test passes so | always
> test for a non-zero string length (it's happened). If | combine the two tests using AND,

> then if the variable is undefined, the STRLEN() function generates an errors (since its

> argument must be defined).

>

Hi Paul,

| can't think how to get away from the two step test. Usually the
ARG_PRESENT() test is reserved for optional output keywords. | would
stick to N_ELEMENTS() and N_PARAMS()

You could squish the two statements into one - but there are still two
tests involved.

If (n_elements(FileName) NE 0) Then $
If (StrLen(FileName[0]) EQ 0) Then $
Print, "Ain't nuttin here, Paul" Else $
Print, "Here's the string" + fileNAME[O] Else $
Print, "fileNAME argument is required, ya' know"

Ben

Subject: Re: string definition question
Posted by thompson on Tue, 14 Jan 2003 18:45:03 GMT

View Forum Message <> Reply to Message

Page 3 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=35
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16843&goto=33606#msg_33606
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=33606
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Paul van Delst <paul.vandelst@noaa.gov> writes:

> mwvogel wrote:

>>

>> As my news server refuses my post, I'll paste it here :-)

>>

>> T

>> | would try KEYWORD_PRESENT; with A defined as 'IDL', B as "and C
>> undefined | get the following :

>> IDL>A="IDL' & B =" & PRINT, KEYWORD_SET(A), KEYWORD_SET(B),
>> KEYWORD_SET(C)

>>

>> 100

>>

>> | guess that works in routines too.

I've always been disappointed that the KEYWORD_SET() routine does not follow
the same logic as the rest of IDL for deciding whether something is true or
false. According to the definition of true and false in the documentation

Definition of True and False

The condition of the IF statement can be any scalar expression. The
definition of true and false for the different data types is as
follows:

* Byte, integer, and long: odd integers are true, even integers are
false.

* Floating-Point, double-precision floating-point, and complex:
non-zero values are true, zero values are false. The imaginary part of
complex numbers is ignored.

* String: any string with a nonzero length is true, null strings are
false.

However, the KEYWORD_SET() documentation simply says

The KEYWORD_SET function returns a nonzero value if Expression is
defined and nonzero or an array, otherwise zero is returned. This
function is especially useful in user-written procedures and functions

that process keywords that are interpreted as being either true

(keyword is present and nonzero) or false (keyword was not used, or was
set to zero).

In other words, KEYWORD_SETY() treats integer and floating point equally, while
they're treated differently in conditional statements. I've always found that

Page 4 of 13 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

troublesome. On the other hand, the treatment of strings is consistent between
the two, although it's undocumented for KEYWORD_SET().

William Thompson

Subject: Re: string definition question
Posted by Paul VVan Delst[1] on Tue, 14 Jan 2003 19:28:03 GMT

View Forum Message <> Reply to Message

Ben Tupper wrote:

>

> On Tue, 14 Jan 2003 10:55:24 -0500, Paul van Delst

> <paul.vandelst@noaa.gov> wrote:

>

>> Hello there,

>>

>> Although | should probably know the answer to this, since all my IDL reference books have
>> peen borrowed, hope you don't mind me asking here.

>>

>> |I'm a bit anal about argument checking in IDL. After establishing that the correct number
>> of arguments has been passed using:

>>

>> n_arguments =1

>> |F (N_PARAMS() LT n_arguments) THEN $

>> MESSAGE, 'Invalid number of arguments.’, $

>> /INONAME, /NOPRINT

>>

>>

>> My standard method for checking string arguments (like filenames to read) is something
>> |ike:

>>

>> |F (N_ELEMENTS(FileNAME) EQ 0) THEN BEGIN

>> MESSAGE, 'Input FileNAME argument not defined!’, $

>> /INONAME, /INOPRINT

>>

>> |F (STRLEN(FileNAME) EQ 0) THEN $

>> MESSAGE, 'Input FileNAME argument not defined!’, $
>> INONAME, /INOPRINT

>>

>> [f | pass a zero-length string, e.g. FileNAME=", the N_ELEMENTS() test passes so | always
>> test for a non-zero string length (it's happened). If | combine the two tests using AND,

>> then if the variable is undefined, the STRLEN() function generates an errors (since its

>> argument must be defined).

>>

> Hi Paul,

>

> | can't think how to get away from the two step test. Usually the

Page 5 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16843&goto=33605#msg_33605
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=33605
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

ARG_PRESENT() test is reserved for optional output keywords. | would
stick to N_ELEMENTS() and N_PARAMS()

You could squish the two statements into one - but there are still two
tests involved.

If (n_elements(FileName) NE 0) Then $
If (StrLen(FileName[0]) EQ 0) Then $
Print, "Ain't nuttin here, Paul" Else $
Print, "Here's the string" + fileNAME[O] Else $
Print, "fileNAME argument is required, ya' know"

VVVVYVVVYVYVYVYV

Here was my solution:

FUNCTION Valid_String, Input_String
IF (N_ELEMENTS(Input_String) EQ 0) THEN RETURN, 0
IF (STRLEN(Input_String) EQ 0) THEN RETURN, O
RETURN, 1

END

Use of the KEYWORD_SET() function (as suggested by Mika) would reduce this to a single
line. | would rather imbed the use of KEYWORD_SET() for this purpose in the same routine
above so later readers of the software (including, or especially, me) don't get confused
since the string to test may be a regular, non-keyword argument.

Anyway....in the routine where | want to test the filename string:
PRO testybits, FileNAME

CATCH, Error_Status
IF (Error_Status NE 0) THEN BEGIN
CATCH, /ICANCEL
MESSAGE, |[ERROR_STATE.MSG, /CONTINUE
IF (N_ELEMENTS(FilelD) NE 0) THEN FREE_LUN, FilelD
RETURN
ENDIF

IF (Valid_String(FileNAME) EQ 0) THEN $
MESSAGE, 'Input FileNAME argument not defined!', $
INONAME, /INOPRINT
PRINT, FileNAME
CATCH, /CANCEL

END

Page 6 of 13 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

paulv

p.s. | guess | should really call it PVD_Valid_String. ha bloody ha. :0)

Paul van Delst

CIMSS @ NOAA/NCEP/EMC
Ph: (301)763-8000 x7274
Fax:(301)763-8545

Subject: Re: string definition question
Posted by JD Smith on Tue, 14 Jan 2003 19:36:42 GMT

View Forum Message <> Reply to Message

On Tue, 14 Jan 2003 11:45:03 -0700, William Thompson wrote:

> Paul van Delst <paul.vandelst@noaa.gov> writes:

>

>> mwvogel wrote:

>>>

>>> As my news server refuses my post, I'll paste it here :-)

>>>

>>> T

>>> | would try KEYWORD_PRESENT,; with A defined as'IDL', Bas " and C
>>> undefined | get the following :

>>> |IDL>A="IDL'& B =" & PRINT, KEYWORD_SET(A), KEYWORD_SET(B),
>>> KEYWORD_SET(C)

>>>

>>> 100

>>>

>>> | guess that works in routines too.

I've always been disappointed that the KEYWORD_SET() routine does not
follow the same logic as the rest of IDL for deciding whether something

is true or false. According to the definition of true and false in the
documentation

Definition of True and False
The condition of the IF statement can be any scalar expression. The
definition of true and false for the different data types is as

follows:

* Byte, integer, and long: odd integers are true, even integers are
false.

VVVVVVVVVYVYVYVYVYVYVYV

Page 7 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16843&goto=33604#msg_33604
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=33604
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

* Floating-Point, double-precision floating-point, and complex:
non-zero values are true, zero values are false. The imaginary part of
complex numbers is ignored.

* String: any string with a nonzero length is true, null strings are
false.

However, the KEYWORD_SET() documentation simply says

>

>

>

>

>

>

>

>

>

> The KEYWORD_SET function returns a nonzero value if Expression is
> defined and nonzero or an array, otherwise zero is returned. This

> function is especially useful in user-written procedures and functions

> that process keywords that are interpreted as being either true

> (keyword is present and nonzero) or false (keyword was not used, or was
> setto zero).

>
>
>
>
>
>

In other words, KEYWORD_SET() treats integer and floating point equally,
while they're treated differently in conditional statements. [I've
always found that troublesome. On the other hand, the treatment of
strings is consistent between the two, although it's undocumented for
KEYWORD_SET().

Strangely enough, this is precisely the reason | *do* like KEYWORD_SET.

Had IDL inherited a more useful definition of TRUE and FALSE than the

FORTRAN versions, a separate logic for KEYWORD_SET wouldn't be necessary,

but do you really want to test for non-zero status in your keywords with:

if keyword_set(key) then if key gt O then do_something

This would not really be a savings over:

if n_elements(key) gt O then if key gt 0 then do_something

And the only time you'd profit from the altered definition would be

discriminating even/odd integers... hardly that common an operation

(for me at least):

if keyword_set(key) then print,"It's odd"

which in real IDL would need to be:

if n_elements(key) gt 0 then if key then print,"It's odd"

| agree that the variety of TRUE/FALSE meanings scattered throughout

IDL is somewhat disconcerting, but in this case, | think it's well

worth it!

JD

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: string definition question
Posted by Mark Hadfield on Tue, 14 Jan 2003 20:32:57 GMT

View Forum Message <> Reply to Message

"Paul van Delst" <paul.vandelst@noaa.gov> wrote in message
news:3E2432EC.18E46318@noaa.gov...

> .

> I'm a bit anal about argument checking in IDL. After establishing that the
correct

> number of arguments has been passed using:

>

> n_arguments =1

> |F (N_PARAMS() LT n_arguments) THEN $

> MESSAGE, 'Invalid number of arguments.’, $

> /INONAME, /NOPRINT

| see your actual question has been answered by others, so permit me to take
another tack. Why do you set the NONAME & NOPRINT keywords? And why check
the number of parameters? Isn't it better to check each argument to see that

it's been defined (with N_ELEMENTS) or that it's available for output (with
ARG_PRESENT) as necessary. The additional N_PARAMS check lets you
distinguish arguments that have been given an undefined value from those

that are completely missing; | don't think this is a very interesting

distinction.

| ask because | feel that | have never really sorted out error checking in
IDL. | guess that | lean towards a minimal approach: if a piece of code
requires that a value be defined then I'll learn soon enough if it's not.
(It's the code that silently gives you the wrong answer that you've got to
look out for.)

Mark Hadfield "Ka puwabha te tai nei, Hoea tatou"
m.hadfield@niwa.co.nz
National Institute for Water and Atmospheric Research (NIWA)

Subject: Re: string definition question
Posted by Mark Hadfield on Tue, 14 Jan 2003 20:39:03 GMT

View Forum Message <> Reply to Message

"William Thompson" <thompson@orpheus.nascom.nasa.gov> wrote in message
news:b01Irf$1fg$l@skates.gsfc.nasa.gov...

> |'ve always been disappointed that the KEYWORD_SET() routine does

> not follow the same logic as the rest of IDL for deciding whether

something

> is true or false. According to the definition of true and false in the

> documentation:

Page 9 of 13 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1027
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16843&goto=33603#msg_33603
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=33603
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1027
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16843&goto=33602#msg_33602
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=33602
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> [snip]

There's a new tip on David's site, written by me, on this very subject (and
touching on the relationship between logical and bitwise operations):

http://www.dfanning.com/code_tips/bitwiselogical.html
Feedback & suggestions for modification are welcome.
Mark Hadfield "Ka puwaha te tai nei, Hoea tatou"

m.hadfield@niwa.co.nz
National Institute for Water and Atmospheric Research (NIWA)

Subject: Re: string definition question
Posted by Paul Van Delst[1] on Tue, 14 Jan 2003 21:27:01 GMT

View Forum Message <> Reply to Message

Mark Hadfield wrote:

>

> "Paul van Delst" <paul.vandelst@noaa.gov> wrote in message

> news:3E2432EC.18E46318@noaa.gov...

>>

>> |'m a bit anal about argument checking in IDL. After establishing that the
> correct

>> number of arguments has been passed using:

>>

>> n_arguments =1

>> |F (N_PARAMS() LT n_arguments) THEN $

>> MESSAGE, 'Invalid number of arguments.’, $

>> /INONAME, /NOPRINT

>

> | see your actual question has been answered by others, so permit me to take
> another tack. Why do you set the NONAME & NOPRINT keywords?

The very first thing | do in *all* my "serious" IDL procedures is this:

CATCH, Error_Status

IF (Error_Status NE 0) THEN BEGIN
CATCH, /ICANCEL
MESSAGE, |[ERROR_STATE.MSG, /CONTINUE
RETURN

ENDIF

and in my functions, this:

@error_codes

Page 10 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16843&goto=33601#msg_33601
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=33601
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

CATCH, Error_Status

IF (Error_Status NE 0) THEN BEGIN
CATCH, /ICANCEL
MESSAGE, |[ERROR_STATE.MSG, /CONTINUE
RETURN, FAILURE

ENDIF

where in the second example, the values for SUCCESS, INFORMATION, WARNING, and
FAILURE are
defined in the include file "error_codes.pro".

The *last* thing | do in procedures is:

CATCH, /ICANCEL
END

and in functions

CATCH, /ICANCEL
RETURN, SUCCESS
END

Now - any error checking | do | use something like:

MESSAGE, 'An error occurred! Oh no!’, $
INONAME, /NOPRINT

All this does is set the IERROR_STATE.MSG which | then actually print out in my CATCH
error handler - all errors tripped using the MESSAGE, 'xxxx', INONAME, /NOPRINT get sent
to the CATCH. | do this so | *always* have only one SUCCESSful exit point and only one
FAILed exit point.

And why check

the number of parameters? Isn't it better to check each argument to see that
it's been defined (with N_ELEMENTS) or that it's available for output (with
ARG_PRESENT) as necessary.

V V. V V

| do both. My simple reasoning is if all the required arguments aren't defined then issue
an error stating that.

> The additional N_PARAMS check lets you

> distinguish arguments that have been given an undefined value from those
> that are completely missing; | don't think this is a very interesting

> distinction.

Hmm - maybe, but | prefer to err on the side of verbosity. | would rather the error
message state "invalid number of arguments" rather than "argument X is not defined" when
what really happened was that argument X wasn't even passed into the routine. When the

Page 11 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

error occurs | want to know *exactly* what occurred - did | forget to pass the argument or
did | forget to define it.

> | ask because | feel that | have never really sorted out error checking in
> IDL. | guess that | lean towards a minimal approach: if a piece of code
> requires that a value be defined then I'll learn soon enough if it's not.

Ahh - therein lies the difference in our attitudes. I'm ridiculously anal about checking
stuff and issuing error messages every chance | get. | have code consisting of 10's of
lines of code and only 1-3 lines are actually the working, non-error checking parts.
Minimalism in coding isn't my strong point. :0\

> (It's the code that silently gives you the wrong answer that you've got to
> look out for.)

oh yeah - you betchya. Every programmers nightmare. But your statement that you'll "learn
soon enough” if something is wrong is not always the case. A number of times I've found
answers to be enticingly correct - only to find out later (sometimes by someone
else...gasp! horror!) they were quite bogus.

paulv

Paul van Delst

CIMSS @ NOAA/NCEP/EMC
Ph: (301)763-8000 x7274
Fax:(301)763-8545

Subject: Re: string definition question
Posted by sheryn.gillin on Tue, 14 Jan 2003 22:12:25 GMT

View Forum Message <> Reply to Message

Hi Paul,

> |s there a one-step method to test that the argument is actually
defined AND >that the string length is not zero?

| tend to use the SIZE function - that way you can get both 'length’
[or number of dimensions in an array] and type (O if undefined) back,
and do my checking on the result.

Cheers
Sheryn

Subject: Re: string definition question

Page 12 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4545
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16843&goto=33598#msg_33598
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=33598
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Posted by thompson on Wed, 15 Jan 2003 15:31:53 GMT

View Forum Message <> Reply to Message

JD Smith <jdsmith@as.arizona.edu> writes:
> On Tue, 14 Jan 2003 11:45:03 -0700, William Thompson wrote:
(stuff deleted)

>> |n other words, KEYWORD_SET() treats integer and floating point equally,
>> while they're treated differently in conditional statements. I've

>> always found that troublesome. On the other hand, the treatment of

>> strings is consistent between the two, although it's undocumented for

>> KEYWORD_SET().

\Y

> Strangely enough, this is precisely the reason | *do* like KEYWORD_SET.

> Had IDL inherited a more useful definition of TRUE and FALSE than the

> FORTRAN versions, a separate logic for KEYWORD_SET wouldn't be necessary,
> but do you really want to test for non-zero status in your keywords with:

(stuff deleted)

But | don't want to test for non-zero status! | want to test for *Boolean*
status--that's what KEYWORD_SET() is supposed to be for! The current
KEYWORD_SETY() fails to correctly treat boolean parameters formed out of
operations such as AND, OR, and NOT. Try this in an IDL program

A=3

B=3

TEST_EQUAL=AEQB

MYPROC, MYKEYWORD=(NOT TEST_EQUAL)

and see what you get for KEYWORD_SET(MYKEYWORD). | know I've been bitten by
that one.

> | agree that the variety of TRUE/FALSE meanings scattered throughout
> IDL is somewhat disconcerting, but in this case, | think it's well
> worth it!

And | agree that the definition of TRUE/FALSE used in IDL's Boolean logic is

somewhat byzantine, but the problem is created by using different definitions
in different places.

Perhaps KEYWORD_SET() should have a /BOOLEAN keyword to force compliance with
how True and False are used elsewhere in IDL.

William Thompson

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=35
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=16843&goto=33592#msg_33592
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=33592
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

