
Subject: socket generated event
Posted by lejardi on Wed, 09 Apr 2003 14:49:03 GMT
View Forum Message <> Reply to Message

Is there any event that can be generated when there is data on the
socket connection to be read? Or does my code just need to keep
checking the socket for any information. Also, how is the information
sent over the socket? Would it be possible for me to read only part of
a message that the server is writing because it has not finished
writing the message to the socket. Or are all messages on a socket
sent in a whole packet. Then I would never get just a section of a
message.

Subject: Re: socket generated event
Posted by condor on Tue, 15 Apr 2003 17:44:34 GMT
View Forum Message <> Reply to Message

lejardi@sandia.gov (Lauren) wrote in message
news:<444b7c15.0304090649.679083fa@posting.google.com>...
> Is there any event that can be generated when there is data on the
> socket connection to be read? Or does my code just need to keep
> checking the socket for any information. Also, how is the information
> sent over the socket? Would it be possible for me to read only part of
> a message that the server is writing because it has not finished
> writing the message to the socket. Or are all messages on a socket
> sent in a whole packet. Then I would never get just a section of a
> message.

Caveat: I've never done socket programming in IDL. I have, however,
done my share of network-transparent client-server stuff in other
languages, and the socket mechanism is really not language dependent.
Or at least I feel qualified to post about. the parts that aren't. :)

Events generated upon readability or writability of a socket are
certainly language-dependent (or better: dependent on the
implementation of the socket access, which at the bottom is certainly
done in C...)

Partial information: this depends on the buffering by the server
(assuming you're writing a client): The standard C stdio mechanism
buffers full lines when talking to terminals, blocks when talking to
anything else. However the application that sends data can decide to
buffer(/send) line-by-line independent of the receiving application.
Or it can do block-buffering, but explicitely flush the port at
certain strategic points in the transmission. Or it can decide to send
stuff byte-by-byte if it wants to. However if nothing else is said or

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4639
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=17229&goto=34638#msg_34638
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=34638
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4193
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=17229&goto=34817#msg_34817
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=34817
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

done, you can expect stuff to arrive in blocks, which are often
8192bytes (but can be other sizes!) which usually don't happen to end
conveniently on a line-ending.

Glancing over the IDL documentaion, it might be easiest to insist on
reading whole lines (s='' & readf, unit, sc) with some reasonable
read_timeout and catching/processing all errors that IDL might throw.
The documentation for 'socket' does not look as if RSI intended for
users to do much socket I/O in IDL -- and the documentation for IOCT
makes it clear that you're not supposed to play with that interface at
all. You might just be better off doing the networking stuff in a
language that is geared towards that kind of thing (like TCL) -- but
that depends on the overall complexity of your problem of course.

Subject: Re: socket generated event
Posted by condor on Tue, 15 Apr 2003 17:44:35 GMT
View Forum Message <> Reply to Message

lejardi@sandia.gov (Lauren) wrote in message
news:<444b7c15.0304090649.679083fa@posting.google.com>...
> Is there any event that can be generated when there is data on the
> socket connection to be read? Or does my code just need to keep
> checking the socket for any information. Also, how is the information
> sent over the socket? Would it be possible for me to read only part of
> a message that the server is writing because it has not finished
> writing the message to the socket. Or are all messages on a socket
> sent in a whole packet. Then I would never get just a section of a
> message.

Caveat: I've never done socket programming in IDL. I have, however,
done my share of network-transparent client-server stuff in other
languages, and the socket mechanism is really not language dependent.
Or at least I feel qualified to post about. the parts that aren't. :)

Events generated upon readability or writability of a socket are
certainly language-dependent (or better: dependent on the
implementation of the socket access, which at the bottom is certainly
done in C...)

Partial information: this depends on the buffering by the server
(assuming you're writing a client): The standard C stdio mechanism
buffers full lines when talking to terminals, blocks when talking to
anything else. However the application that sends data can decide to
buffer(/send) line-by-line independent of the receiving application.
Or it can do block-buffering, but explicitely flush the port at
certain strategic points in the transmission. Or it can decide to send

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4193
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=17229&goto=34818#msg_34818
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=34818
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

stuff byte-by-byte if it wants to. However if nothing else is said or
done, you can expect stuff to arrive in blocks, which are often
8192bytes (but can be other sizes!) which usually don't happen to end
conveniently on a line-ending.

Glancing over the IDL documentaion, it might be easiest to insist on
reading whole lines (sc='' & readf, unit, sc) with some reasonable
read_timeout and catching/processing all errors that IDL might throw.
The documentation for 'socket' does not look as if RSI intended for
users to do much socket I/O in IDL -- and the documentation for IOCT
makes it clear that you're not supposed to play with that interface at
all. You might just be better off doing the networking stuff in a
language that is geared towards that kind of thing (like TCL) -- but
that depends on the overall complexity of your problem of course.

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

