## Subject: Re: Multidimensional Interpolation Posted by JD Smith on Mon, 21 Jul 2003 18:27:19 GMT

View Forum Message <> Reply to Message

On Mon, 21 Jul 2003 08:40:58 -0700, lan Chapman wrote:

```
> Hi,
> I have created a 5 dimensional data cube (pressure, temperature,
> relative humidity, frequency, transmission) with a radiative transfer
> model. I have a user that will need to get transmission data for given
> values of the rest of the parameters, so I am currently planning to
> interpolate the cube to the input values of the user.
> Does anyone know of any multi-dimensional interpolation routines
> (similar to spline) that would be able to perform this task?
```

You could roll your own using VALUE\_LOCATE to locate the point (p,t,h,f) within each of the 4 relevant axes (bracketed between i,j,k,l and i+1,j+1,k+1,l+1), and then perform quad-linear interpolation on the 16 nearby grid points bracketing the desired value. E.g., let:

```
a=(p-p[i])/(p[i+1]-p[i])
b=(t-t[i])/(t[j+1]-t[j])
c=(h-h[i])/(h[k+1]-h[k])
d=(f-f[i])/(f[l+1]-f[l])
```

The quad-linear interpolant over you whole data cube "z" would look like:

```
(1-a)(1-b)(1-c)(1-d) z[i,j,k,l] +
(1-a)(1-b)(1-c) d z[i ,j ,k ,l+1] +
(1-a)(1-b) c (1-d) z[i ,j ,k+1,l]+
(1-a)(1-b) c d z[i ,j ,k+1,l+1] +
(1-a) b (1-c)(1-d) z[i ,j+1,k ,l ] +
(1-a) b (1-c) d z[i,j+1,k,l+1] +
(1-a) b c (1-d) z[i ,j+1,k+1,l ]+
(1-a) b c d z[i ,j+1,k+1,l+1] +
 a (1-b)(1-c)(1-d) z[i+1,i,k,l] +
 a(1-b)(1-c) d z[i+1,j,k,l+1] +
 a (1-b) c (1-d) z[i+1,j,k+1,l] +
 a(1-b) c d z[i+1,j,k+1,l+1] +
 a b (1-c)(1-d) z[i+1,j+1,k ,l]+
    b(1-c) d z[i+1,j+1,k,l+1] +
    b c (1-d) z[i+1,j+1,k+1,l] +
 а
```

## a b c d) z[i+1,j+1,k+1,l+1]

The regularity of this pattern lends one to believe a generic n-linear interpolation code could be written. Fancier interpolation methods (cubic, spline, sinc) get much harder in higher dimensions.

JD

Subject: Re: Multidimensional Interpolation Posted by R.G. Stockwell on Mon, 21 Jul 2003 19:46:17 GMT View Forum Message <> Reply to Message

"lan Chapman" <ian@terraengine.com> wrote in message news:1b6a0bfb.0307210740.baef502@posting.google.com...

- > Hi,
- >
- > I have created a 5 dimensional data cube (pressure, temperature,
- > relative humidity, frequency, transmission) with a radiative transfer
- > model. I have a user that will need to get transmission data for
- > given values of the rest of the parameters, so I am currently planning
- > to interpolate the cube to the input values of the user.

>

- > Does anyone know of any multi-dimensional interpolation routines
- > (similar to spline) that would be able to perform this task?

>

> -lan

LOESS (local regression) interpolation is popular with some satellite processing groups.

It is pretty straight forward (just set up your least squares fit equation for an appropriate

function, like a quadratic, and solve with svd or cholskey).

A brief writeup is at

http://www.colorado-research.com/~stockwel/qscatsmp/qscatsmp .shtml

this may be a wee bit slow for you though.

Cheers, bob

Subject: Re: Multidimensional Interpolation Posted by Haje Korth on Tue, 22 Jul 2003 11:51:20 GMT View Forum Message <> Reply to Message

```
JD,
could you give me the source for your solution. Are you aware of a good
textbook on this matter?
Thanks.
Haje
"JD Smith" <jdsmith@as.arizona.edu> wrote in message
news:pan.2003.07.21.18.27.19.886736.21942@as.arizona.edu...
> On Mon, 21 Jul 2003 08:40:58 -0700, Ian Chapman wrote:
>> Hi,
>>
>> I have created a 5 dimensional data cube (pressure, temperature,
>> relative humidity, frequency, transmission) with a radiative transfer
>> model. I have a user that will need to get transmission data for given
>> values of the rest of the parameters, so I am currently planning to
>> interpolate the cube to the input values of the user.
>>
>> Does anyone know of any multi-dimensional interpolation routines
>> (similar to spline) that would be able to perform this task?
>>
>
> You could roll your own using VALUE_LOCATE to locate the point
> (p,t,h,f) within each of the 4 relevant axes (bracketed between
> i,j,k,l and i+1,j+1,k+1,l+1), and then perform quad-linear
> interpolation on the 16 nearby grid points bracketing the desired
> value. E.g., let:
> a=(p-p[i])/(p[i+1]-p[i])
> b=(t-t[i])/(t[i+1]-t[i])
> c=(h-h[i])/(h[k+1]-h[k])
> d=(f-f[i])/(f[l+1]-f[l])
>
  The quad-linear interpolant over you whole data cube "z" would look
>
> like:
> (1-a)(1-b)(1-c)(1-d) z[i,j,k,l] +
> (1-a)(1-b)(1-c) d z[i,j,k,l+1] +
> (1-a)(1-b) c (1-d) z[i,j,k+1,l] +
> (1-a)(1-b) c d z[i ,j ,k+1,l+1] +
> (1-a) b (1-c)(1-d) z[i,j+1,k,l] +
> (1-a) b (1-c) d z[i,j+1,k,l+1] +
> (1-a) b c (1-d) z[i,j+1,k+1,l] +
> (1-a) b c d z[i,j+1,k+1,l+1] +
```

a (1-b)(1-c)(1-d) z[i+1,i,k,l] +

```
> a (1-b)(1-c) d z[i+1,j ,k ,l+1] +
> a (1-b) c (1-d) z[i+1,j ,k+1,l ] +
> a (1-b) c d z[i+1,j ,k+1,l+1] +
> a b (1-c)(1-d) z[i+1,j+1,k ,l ] +
> a b (1-c) d z[i+1,j+1,k ,l+1] +
> a b c (1-d) z[i+1,j+1,k+1,l ] +
> a b c d) z[i+1,j+1,k+1,l+1]
>
> The regularity of this pattern lends one to believe a generic n-linear
> interpolation code could be written. Fancier interpolation methods
> (cubic, spline, sinc) get much harder in higher dimensions.
> JD
```

Subject: Re: Multidimensional Interpolation
Posted by Paul Van Delst[1] on Tue, 22 Jul 2003 12:39:49 GMT
View Forum Message <> Reply to Message

## Haje Korth wrote:

> > JD.

- > could you give me the source for your solution. Are you aware of a good
- > textbook on this matter?

I would be interested also. I want to do some 2-D (or is it 3-D?) interpolation but using bicubic interpolation. My (feeble) initial attempts to figure out how have led me to my NR book, but the method of deriving the coefficients to do the interpolation is brazenly swept under the rug.

## paulv

```
> Thanks,
> Haje
> "JD Smith" <jdsmith@as.arizona.edu> wrote in message
> news:pan.2003.07.21.18.27.19.886736.21942@as.arizona.edu...
>> On Mon, 21 Jul 2003 08:40:58 -0700, Ian Chapman wrote:
>> Hi,
>>>
>> I have created a 5 dimensional data cube (pressure, temperature,
>> relative humidity, frequency, transmission) with a radiative transfer
>> model. I have a user that will need to get transmission data for given
>> values of the rest of the parameters, so I am currently planning to
>> interpolate the cube to the input values of the user.
```

```
>>> Does anyone know of any multi-dimensional interpolation routines
>>> (similar to spline) that would be able to perform this task?
>>>
>>
>>
>> You could roll your own using VALUE_LOCATE to locate the point
   (p,t,h,f) within each of the 4 relevant axes (bracketed between
>> i,j,k,l and i+1,j+1,k+1,l+1), and then perform quad-linear
>> interpolation on the 16 nearby grid points bracketing the desired
>> value. E.g., let:
>>
>> a=(p-p[i])/(p[i+1]-p[i])
>> b=(t-t[i])/(t[j+1]-t[j])
>> c=(h-h[i])/(h[k+1]-h[k])
>> d=(f-f[i])/(f[l+1]-f[l])
>>
>> The quad-linear interpolant over you whole data cube "z" would look
   like:
>>
>> (1-a)(1-b)(1-c)(1-d) z[i,j,k,l] +
\Rightarrow (1-a)(1-b)(1-c) d z[i ,j ,k ,l+1] +
>> (1-a)(1-b) c (1-d) z[i,j,k+1,l] +
>> (1-a)(1-b) c d z[i ,j ,k+1,l+1] +
>> (1-a) b (1-c)(1-d) z[i,j+1,k,l] +
>> (1-a) b (1-c) d z[i ,j+1,k ,l+1] +
>> (1-a) b c (1-d) z[i ,j+1,k+1,l ]+
   (1-a) b c d z[i ,j+1,k+1,l+1] +
     a (1-b)(1-c)(1-d) z[i+1,j,k,l] +
     a(1-b)(1-c) d z[i+1,j,k,l+1] +
>>
>>
     a (1-b) c (1-d) z[i+1,j ,k+1,l] +
     a(1-b) c dz[i+1,j,k+1,l+1] +
>>
     a b (1-c)(1-d) z[i+1,j+1,k ,l ] +
>>
     a b (1-c) d z[i+1,j+1,k,l+1] +
>>
     a b c (1-d) z[i+1,j+1,k+1,l] +
>>
     a b c d) z[i+1,j+1,k+1,l+1]
>>
>> The regularity of this pattern lends one to believe a generic n-linear
>> interpolation code could be written. Fancier interpolation methods
   (cubic, spline, sinc) get much harder in higher dimensions.
>>
>> JD
Paul van Delst
CIMSS @ NOAA/NCEP/EMC
Ph: (301)763-8000 x7748
Fax:(301)763-8545
```