Subject: Re: Inverting banded-block matrices.
Posted by Liam E. Gumley on Fri, 29 Aug 2003 15:32:04 GMT

View Forum Message <> Reply to Message

"James Kuyper" <kuyper@saicmodis.com> wrote in message
news:3F4E8B4D.BOOEDAA8@saicmodis.com...

I've got a problem where | have to calculate g = C D*-1 f, where g and f
are vectors, and C and D are matrices. C has m by m blocks, each of
which is itself an n by n matrix. It is banded, with k non-zero
co-diagonals above and below the main diagnal, both at the block level
and within each block. CJi,j] ge 0. Every statement I've made about C
also applies to D.

For the sake of definiteness, m=10, n=1354, k = 3.

This seems like it should be a pretty common type of matrix structure
for problems involving 2-D grids. | could solve this by explicitly

inverting a m*n by m*n matrix. However, | would assume that there are
existing routines somewhere which can take good advantage of the
sparseness of these matrices to speed up the calculations considerably.
Could anyone point me at such routines?

VVVVVVVYVVYVYVYVYVYV

| believe LAPACK routines were incorporated in IDL 5.6, however | have not
tried them.

Cheers,

Liam.

Practical IDL Programming
http://www.gumley.com/

Subject: Re: Inverting banded-block matrices.
Posted by the cacc on Sat, 30 Aug 2003 00:30:08 GMT

View Forum Message <> Reply to Message

James Kuyper <kuyper@saicmodis.com> wrote in message
news:<3F4E8B4D.BOOEDAA8@saicmodis.com>...

I've got a problem where | have to calculate g = C D*-1 f, where g and f
are vectors, and C and D are matrices. C has m by m blocks, each of
which is itself an n by n matrix. It is banded, with k non-zero
co-diagonals above and below the main diagnal, both at the block level
and within each block. CJi,j] ge 0. Every statement I've made about C
also applies to D.

For the sake of definiteness, m=10, n=1354, k = 3.

This seems like it should be a pretty common type of matrix structure
for problems involving 2-D grids. | could solve this by explicitly
inverting a m*n by m*n matrix. However, | would assume that there are
existing routines somewhere which can take good advantage of the

VVVVVVYVVYVYVYVYV

Page 1 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3379
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=17904&goto=36304#msg_36304
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=36304
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4084
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=17904&goto=36291#msg_36291
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=36291
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> sparseness of these matrices to speed up the calculations considerably.
> Could anyone point me at such routines?

There are some sparse routines in IDL - sprsin, sprsax, sprsab,
sprstp. They're "general” rather than specifically for a certain
structure of sparseness, but that should be OK.

Your matrices are pretty big so you can forget about matrix inversion
and use an iterative method instead - conjugate gradient (CG) is good.

Actually, can you even store one of those matrices in memory? (I'm on
a 80 MB machine so | can't!). If you can, then try

IDL> sparse_D = sprsin(D)
(NB. May be rather slow) If you can't, then you'll have to write a

routine to create your matrix in sparse format - hopefully you won't
have to do this - trust me :) Let's leave that alone for the moment.

Rewriteas (1) g=C . h
(2)h=D"1.f

The real work is solving (2). You basically have to solve D . h =1,
or sparse_D . h =f, which IDL's linbcg may solve for you.

| found linbcg not so good as the simple CG, which I've implemented.
You'd be welcome to use it if you want - but first check if you can
create the sparse matrix!

Ciao.

Page 2 of 2 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

