Subject: Help on calling Fortran routines from IDL under linux
Posted by isoaga2 on Wed, 08 Oct 2003 06:45:35 GMT

View Forum Message <> Reply to Message

For the past few days i have been trying to call basic fortran

routines from IDL (IDL 6.0 and Gentoo Linux on a PC). First i tried

using the CALL_EXTERNAL approach using both fortran and C wrappers as
shown in the IDL documentation however the output i was getting from

the sum_array example was incorrect. Here is what i did first:

pro test_call_external

x =[1.0,2.0,3.0]

sum = 0.0

n = n_elements(x)

s = call_external('/home/david/PhD/Fortran/sum_array.so',
'sum_array', $

X, N, sum)
print, s
help, s

end

#include <stdio.h>

void sum_array(int argc, void *argv[])

{

extern void sumd_(); /* Fortran Routine */

int *n;

float *s, *f;

f = (float *) argv[O]; /* Array pntr */

n = (int *) argv[1]; /* Get # of elements */

s = (float *) argv[2]; /* Pass back result a parameter */

sumd_(f, n, s); /* Compute Sum */

SUBROUTINE sumd(array, n, sum)

Page 1 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4830
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=18026&goto=36586#msg_36586
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=36586
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

INTEGER*4 n
REAL*4 array(n), sum

sum=0.0
DO i=1,n
sum = sum + array(i)
ENDDO

RETURN
END

| compiled both the sumd.f and sum_array.c files to objects then
linked them together into a shared object (sum_array.so) using gcc (i
think, i'm a gcc ultra newbie) as follows:

gcc -c sumd.f
gcc -c sum_array.c
gcc -shared -0 sum_array.so sumd.o sum_array.o

However, when i compile and run test_call_external i get the output:

-1073746820
S LONG = -1073746820

This, i don't understand, so i figured i'd try the fortran wrapper
like this...

SUBROUTINE SUM_ARRAY (argc, argv) !Called by IDL
INTEGER*4 argc, argv(*) IArgc and Argv are integers

j = LOC(argc) I0Obtains the number of arguments (argc)
IBecause argc is passed by VALUE.

CALL SUM_ARRAY1(%VAL(argv(1)), %VAL(argv(2)), %VAL(argv(3)))
RETURN
END

SUBROUTINE SUM_ARRAY1(array, n, sum)
INTEGER*4 n, test
REAL*4 array(n), sum

sum=0.0
DO i=1,n
sum = sum + array(i)

Page 2 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

ENDDO
RETURN
END

| compiled this with gcc as (to get the shared object dave.so)
gcc -w -shared -0 dave.so dave.f

and then run the following idl program...

pro test_call_external

x =[1.0,2.0,3.0]

sum = 0.0

n = n_elements(x)

s = call_external('/home/david/PhD/Fortran/dave.so’, 'sum_array ', $
X, N, sum)

print, s

help, s

end

the entry point has 2 trailing underscores due to the gcc compile
process i think, i used "nm dave.so" to find that out. After running
that idl program i get

-1073746824
S LONG = -1073746824

Which is almost identical to the ¢ wrapper approach, anyone have an
idea as to my mistake?

The next thing i did was to try out the dim approach described by
S.V.H. Haugun on http://www.astro.uio.no/~steinhh/idl/additions.html
using his cool perl script and ftnchek. | figured i test it out with

the example he suggested, ie this fortran routine...

DOUBLE PRECISION FUNCTION SQUARE(X)
DOUBLE PRECISION X

SQUARE = X * X

END

Page 3 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Then, trying to follow his instructions for my machine i did:

ftnchek -nocheck -quiet -makedcl square.for

dimform square.for

gcc -o square.fo -c square.f

gcc -c square.c

gcc -shared -0 square.so square.o square.fo

mv square.so /usr/local/rsi/idl/bin/bin.linux.x86/square.so
mv square.dim /usr/local/rsi/idl/bin/bin.linux.x86/square.dlm

restarted idl and did

dim_load, 'square’
% Loaded DLM: SQUARE.

but then,

IDL> print, square(4)

% Variable is undefined: SQUARE.
% Execution halted at: $MAINS$
IDL>

i checked the loaded module with

% Execution halted at: $MAIN$
IDL> help, /dlm, name="'square'
** SQUARE - Subroutines: SQUARE (loaded)
Version: <unknown>, Build Date: 8 Oct 2003, Source: Perl script
written by S. V. H. Haugan
Path: /usr/local/rsi/idl_6.0/bin/bin.linux.x86/square.so
IDL>

So i'm not sure why that is not working either :(

Anyhelp would be great, Thanx.

Subject: Re: Help on calling Fortran routines from IDL under linux
Posted by Nigel Wade on Thu, 09 Oct 2003 09:34:47 GMT

View Forum Message <> Reply to Message

David Green wrote:

> Nigel Wade <nmw@ion.le.ac.uk> wrote in message news:<bm10fa$ef8$1@south.jnrs.ja.net>...
>

>>

>> Hmm, shouldn't that be "print, sum'? Your C wrapper puts the sum in the 3rd
>> parameter, argv[2].

>>

Page 4 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2519
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=18026&goto=36667#msg_36667
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=36667
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> Also, your C wrapper return type is void, so s in IDL will have no value.

Hey thanx Nigel, you are right of course, i thouhgt that the s
variable would contain the answer however this is obviously not the
case, do you know what it does contain?

Using the fortran wrapper works fine and print, sum gives the correct
answer. Now to apply this approach to a more complicated function...

VVVVYVYVYVYV

It's the return value of the function called.

Since your external routine has void as it's return type it doesn't return
anything, so s will contain garbage.

Nigel Wade, System Administrator, Space Plasma Physics Group,
University of Leicester, Leicester, LE1 7RH, UK

E-mail : nmw@ion.le.ac.uk

Phone: +44 (0)116 2523548, Fax : +44 (0)116 2523555

Page 5 of 5 ---- Generated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

