Subject: Re: How to solve a homogeneous system(Ax=0) with a gauss elimination method that x is not zero.

Posted by marc schellens[1] on Wed, 05 Nov 2003 13:19:56 GMT

View Forum Message <> Reply to Message

Look at the GS_ITER function.

cheers, marc

jhkim wrote:

- > I would like to solve a homogeneous system (Ax=0) with non-trivial
- > solution (x is not zero) using a Gauss elimination.
- > Please, let me know how to make a program with IDL. A is a 44 * 44
- > matrix.

Subject: Re: How to solve a homogeneous system(Ax=0) with a gauss elimination method that x is not zero.

Posted by planets on Thu, 06 Nov 2003 01:56:29 GMT

View Forum Message <> Reply to Message

Thank you for the advice. However, The function can't solve the problem. Please,let me know another solution or correct my program.

My sample program is below.

```
========
pro test

a=dblarr(3,3)
b=dblarr(3)
result=dblarr(3)

a=[[1,3,1],[3,4,5],[4,2,1]]
b[*]=1.0

result=gs_iter(a,b)
print, result
end
```

Marc Schellens <m_schellens@hotmail.com> wrote in message

========

```
news:<3FA8F8FC.7040009@hotmail.com>...

> Look at the

> GS_ITER

> function.

> cheers,

> marc

> jhkim wrote:

> I would like to solve a homogeneous system (Ax=0) with non-trivial

>> solution (x is not zero) using a Gauss elimination.

>> Please, let me know how to make a program with IDL. A is a 44 * 44

>> matrix.
```

Subject: Re: How to solve a homogeneous system(Ax=0) with a gauss elimination method that x is not zero.

Posted by Mark Hadfield on Thu, 06 Nov 2003 04:07:42 GMT View Forum Message <> Reply to Message

jhkim wrote:

> end

```
    Thank you for the advice. However, The function can't solve the problem.
    Please, let me know another solution or correct my program.
```

> My sample program is below.
> ========
> pro test
> a=dblarr(3,3)
> b=dblarr(3)
> result=dblarr(3)
> a=[[1,3,1],[3,4,5],[4,2,1]]
> b[*]=1.0
> result=gs_iter(a,b)
> print, result
>

If you set the CHECK keyword, then GS_ITER will report the useful information that:

Input matrix is not in Diagonally Dominant form. Algorithm may not converge.

This seems to be your problem.

I have forgotten what little I ever knew about solving matrix equations with IDL, but I recall that the more robust solution techniques involve a decomposition of A. For example LU decomposition (LUDC or LA_LUDC, LUSOL or LA_LUSOL), Cholesky decomposition (CHOLDC or LA_CHOLDC, CHOLSOL or LA_CHOLSOL, only for positive-definite A) and singular-value decomposition (SVDC or LA_SVD, SVDSOL).

For what it's worth, here is an SVD example I wrote for myself some time ago. Note that A is not square: SVD can be used for over-determined or under-determined sets of equations. This makes it good for hack-it-and-see mathematicians like me, who like to get a solution even if it's wrong.

pro mgh_example_matrix_svd, TRANSPOSE=transpose

```
compile opt IDL2
a = [[1.0, 2.0, -1.0, 2.5], $
   [1.5, 3.3, -0.5, 2.0], $
   [3.1, 0.7, 2.2, 0.0], $
   [0.0, 0.3, -2.0, 5.3], $
   [2.1, 1.0, 4.3, 2.2], $
   [0.0, 5.5, 3.8, 0.2]
if keyword_set(transpose) then a = transpose(a)
print, 'a:'
print, a
la svd, a, w, u, v
print, 'u:'
print, u
print, 'v:'
print, v
;; Zero small elements of w
small = where(w lt 1.E-6*max(w), n small)
if n_{small} gt 0 then w_{small} = 0
print, 'w:'
print, w
;; Recreate original matrix
```

```
aa = u ## diag_matrix(w) ## transpose(v)

print, 'max(abs(aa-a))'
print, max(abs(aa-a))

end

--

Mark Hadfield "Ka puwaha te tai nei, Hoea tatou"
m.hadfield@niwa.co.nz
National Institute for Water and Atmospheric Research (NIWA)
```