Subject: Re: Unique combinations from a 1d array
Posted by David Fanning on Wed, 14 Jan 2004 22:38:16 GMT

View Forum Message <> Reply to Message

Darren writes:

Does anyone know of a more efficient means to determine the set of all
unigue combinations of 2 from a 1d array? The following is an approach
that works but for large arrays -say 3000 or more elements it is very
slow. Part of the problem is due to memory because the number of

V V V V

total number of combinations is 4498500. Writing the paired difference
results to a temporary file helped considerably, but is still far too
slow. Any ideas would be much appreciated.

Here is the code | have:

V V.V V VYV

n = n_elements(X)

d = make_array(1, /float)

for i=0, n-1 do for j=0, n-1 do begin
if i le j then begin
d = [d, X[i] - X[i]]
endif

endfor

d = d[1:n-1]

VVVVYVYVYVYV

Here is a method that gets the same answer as
your code. (Although | can't convince myself it
does what you *say* it does!)

x = RandomU(-3L, 10) * 10
Darren's method:

% Compiled module: $SMAINS.

IDL> .go
0.000000 3.39667 1.30986 3.08815 8.37598
0.751965 8.60027 6.79858 7.55522

My method:

IDL> Print, (x[0] - Shift(x,1))[1:*]

0.000000 3.39667 1.30986 3.08815 8.37598
0.751965 8.60027 6.79858 7.55522

Cheers,

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=18474&goto=37624#msg_37624
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=37624
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

David

David W. Fanning, Ph.D.

Fanning Software Consulting, Inc.

Phone: 970-221-0438, E-mail: david@dfanning.com

Coyote's Guide to IDL Programming: http://www.dfanning.com/
Toll-Free IDL Book Orders: 1-888-461-0155

Subject: Re: Unique combinations from a 1d array
Posted by Chris Lee on Thu, 15 Jan 2004 10:00:39 GMT

View Forum Message <> Reply to Message

In article <MPG.1a6f72c6de3bcc529897a0@news.frii.com>, "David Fanning"
<david@dfanning.com> wrote:

> Darren writes:

>

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

Hi,

Does anyone know of a more efficient means to determine the set of all
unigue combinations of 2 from a 1d array? The following is an approach
that works but for large arrays -say 3000 or more elements it is very
slow. Part of the problem is due to memory because the number of paired
comparisons becomes very large i¢ Yz i.e. for 3000 elements the total
number of combinations is 4498500. Writing the paired difference
results to a temporary file helped considerably, but is still far too
slow. Any ideas would be much appreciated. Here is the code | have:
X =[X1, X2, X3i¢%..Xn+1]
n = n_elements(X)
d = make_array(1, /float)
for i=0, n-1 do for j=0, n-1 do begin

if i le j then begin

d = [d, X[i] - X[l

endif
endfor
d =d[1:n-1]

I'm with David on what your code actually *does*. Especially since I'm
not sure if the last line should be 1:n-1 or 1:* (since n_elements(d) >
n) ? Your 3000 makes 449000 argument says 1:* .

So, incrementally ‘improving' your code.

X =

[X1,X2,X3,X4,..Xn+1]

n=n_elements(X)
d=make_array(type=size(x,/type), dimension=total(findgen(n)))

Page 2 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4772
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=18474&goto=37715#msg_37715
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=37715
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

c=0L

for i=0, n-1 do for j=i+1, n-1 do begin
d[c]=XIi]-X[i]

c=c+l

endfor

;timing results for an N element array are

N yours (S) mine (s)
10 0.0033 0.0028
100 0.026 0.011
1000 (too long) 0.61
1000Q *x*** 61.0
etc.

Of course, under a few thousand elements there are fun matrix
methods, i.e

n=n_elements(x)

y=findgen(n)

val=x#replicate(1,n) - x##replicate(1,n)
mask=y#replicate(1,n) - y##replicate(1,n)

;upper diagonal of val contains the unique elements | think.
return, val[where(y gt 0)]

that one comes in at 0.099s for 1000 points, but there's a health warning
attached to it, its a memory hog at ~(3*N”2) instead of ~(N"2), which doesn't
sound bad but it is :) | couldn't get results for the 10000 point case, but

for 2000 (1.0s c.f 2.4s) and 4000 (1.5s c.f 9.4s) it is faster.

Chris.

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

