Subject: RADON/RIENMANN TRANSFORMATION Posted by 555777555 on Mon, 14 Jun 2004 20:14:09 GMT

View Forum Message <> Reply to Message

I have data aquired over 360 degrees

Want to do backprojection with Radon/reinmann transformation

Seemingly Radon / Rienmann transformations inherently work over 180 degrees

How do i impliment the above without having to discard the data aquired at

> 180 degrees

Thanks, any suggestions / references welcome

Max

Subject: Re: RADON/RIENMANN TRANSFORMATION Posted by lovedale27 on Tue, 15 Jun 2004 19:00:16 GMT

View Forum Message <> Reply to Message

Radon transform over 180 is enough. 360 degrees is redundant.

Subject: Re: RADON/RIENMANN TRANSFORMATION Posted by peter.julyan on Wed, 16 Jun 2004 08:29:17 GMT View Forum Message <> Reply to Message

lovedale27@hotmail.com (Karthikayan B.) wrote in message news:<f4f859c4.0406151100.43672617@posting.google.com>...

> Radon transform over 180 is enough. 360 degrees is redundant.

If your data is noisy then the 180-360 certainly isn't redundant. You just need to add it to the 0-180 data (reversed as approriate) to use with RADON.

Pete.

Subject: Re: RADON/RIENMANN TRANSFORMATION Posted by Timm Weitkamp on Wed, 16 Jun 2004 13:18:00 GMT View Forum Message <> Reply to Message

Today at 01:29 -0700, Peter Julyan wrote:

- > If your data is noisy then the 180-360 certainly isn't redundant. You
- > just need to add it to the 0-180 data (reversed as approriate) to use
- > with RADON.

Oh, I'd say it's a lot easier than that. The THETA keyword to RADON allows you to specify the values of the angles in your sinogram, in radians. It

works nicely if you stick to the instructions (RADON is a bit picky about whether parameters are given as named variables or not), and for any angular range, not only 0-180 degrees.

Have fun Timm

Subject: Re: RADON/RIENMANN TRANSFORMATION Posted by 555777555 on Sat, 19 Jun 2004 14:47:29 GMT View Forum Message <> Reply to Message

Thanks for everyones answers ans suggestions, i appeciate it very much 1. Assuming the data is aquired in 128*128 matrix, over 360 degrees at 1 image per angle (for simplicity)

- -> is it correct to say:
- -> the sinogram will be 128 images of 128*360 matrix
- > From the discussion the Theta should be an array of 360 elements ,(one element per angle)
- -> For every Theta there should be an assosiated RHO, which means it should also be an array of 360 elements.

I have tried using the above but IDL respond that the dimentions do not agree

? What is the correct way / Where am i wrong Max

"Timm Weitkamp" <dont.try@this.address> wrote in message news:Pine.LNX.4.44.0406161510030.30529-100000@localhost.loca Idomain...

> Today at 01:29 -0700, Peter Julyan wrote:

>> If your data is noisy then the 180-360 certainly isn't redundant. You

>> just need to add it to the 0-180 data (reversed as approriate) to use

>> with RADON.

> Oh, I'd say it's a lot easier than that. The THETA keyword to RADON allows

- > you to specify the values of the angles in your sinogram, in radians. It
- > works nicely if you stick to the instructions (RADON is a bit picky about
- > whether parameters are given as named variables or not), and for any
- > angular range, not only 0-180 degrees.
- > Have fun
- > Timm

>

>

>

Subject: Re: RADON/RIENMANN TRANSFORMATION Posted by Timm Weitkamp on Mon, 21 Jun 2004 17:05:52 GMT

View Forum Message <> Reply to Message

Max:

- > -> is it correct to say:
- > -> the sinogram will be 128 images of 128*360 matrix

Yes.

- > From the discussion the Theta should be an array of 360 elements ,(one
- > element per angle)

Yes. If the angles are equidistant with 1 degree spacing, then you might set

IDL> theta = FINDGEN(360) * !DTOR

- > -> For every Theta there should be an assosiated RHO , which means it should
- > also be an array of 360 elements.

No! RHO is the spatial coordinate and is therefore, in your case, a vector of 128 elements. For example:

```
IDL> rho = FINDGEN(128) - (127 / 2.0)
```

For the backprojection, you can then call RADON with the previously defined variables "theta" and "rho" and the sinogram data. For example:

(where "sinogram" should be the array containing your sinogram [which you will probably have to filter before]).

Good luck

Timm

On 19.06.04 at 16:47, 555777555 wrote:

- > Thanks for everyones answers ans suggestions, i appeciate it very much
- > 1. Assuming the data is aguired in 128*128 matrix, over 360 degrees at 1
- > image per angle
- > (for simplicity)
- > -> is it correct to say:
- > -> the sinogram will be 128 images of 128*360 matrix

- > -> From the discussion the Theta should be an array of 360 elements, (one
- > element per angle)
- > -> For every Theta there should be an assosiated RHO, which means it should
- > also be an array of 360 elements.

>

- > I have tried using the above but IDL respond that the dimentions do not
- > agree
- > ? What is the correct way / Where am i wrong
- > Max

Timm Weitkamp http://people.web.psi.ch/weitkamp