Subject: Re: multiplication by a diagonal matrix Posted by Paolo Grigis on Fri, 03 Sep 2004 12:32:11 GMT

View Forum Message <> Reply to Message

```
Lorenzo Busetto wrote:
```

> Hi all,

>

- > I have the following problem: given a matrix A(n,m) and a vector of
- > weighting factors w(n), i need to multiply each row of the matrix
- > A(i,\*)by the corresponding weighting factor w(i).

>

- > I know that I can simply "transform" the w vector into a diagonal
- > matrix with diag\_matrix and then multiply it with A (e.g.: result =
- > A##diag\_matrix(w)), but for large values of n this solution is very
- > slow.

>

- > Can anybody suggest me a faster approach to solve this problem?
- > Thanks in advance for the help,
- > Lorenzo Busetto

>

- > Remote Sensing Lab.
- > University of Milano-Bicocca.

You could try (if you \*really\* want to avoid a FOR loop over the rows):

N=n\_elements(w) ahelp=replicate(1d,N)##w res=a\*ahelp

In the second line, \* is much faster than ##, and the first line is just a 1 by N matrix multiplication, faster than the N by N you used.

Ciao, Paolo

Subject: Re: multiplication by a diagonal matrix Posted by Craig Markwardt on Fri, 03 Sep 2004 14:42:37 GMT View Forum Message <> Reply to Message

Ibusett@yahoo.it (Lorenzo Busetto) writes:

> Hi all,

>

> I have the following problem: given a matrix A(n,m) and a vector of

- > weighting factors w(n), i need to multiply each row of the matrix
- > A(i,\*)by the corresponding weighting factor w(i).

It sounds like you want to use a FOR loop. When N is small, the number of loop iterations is small, so it will be fast. When N is large, the number of loop iterations is larger too, but you also get more done per iteration (N multiplies per iteration), plus you save N\*(N-1) elements of memory compared to the full matrix approach.

Good luck, Craig

Craig

-----

Craig B. Markwardt, Ph.D. EMAIL: craigmnet@REMOVEcow.physics.wisc.edu Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response

-----

Subject: Re: multiplication by a diagonal matrix Posted by JD Smith on Fri, 03 Sep 2004 15:01:56 GMT View Forum Message <> Reply to Message

On Fri, 03 Sep 2004 03:53:06 -0700, Lorenzo Busetto wrote:

> Hi all,

> '''

- I have the following problem: given a matrix A(n,m) and a vector of
- > weighting factors w(n), i need to multiply each row of the matrix A(i,\*)by
- > the corresponding weighting factor w(i).

- > I know that I can simply "transform" the w vector into a diagonal matrix
- > with diag\_matrix and then multiply it with A (e.g.: result =
- > A##diag\_matrix(w)), but for large values of n this solution is very slow.

>

> Can anybody suggest me a faster approach to solve this problem?

I have had luck with the SPRSIN and SPRSAB, the numerical recipes sparse matrix routines IDL includes.

JD

## Subject: Re: multiplication by a diagonal matrix Posted by gnarloo on Fri, 03 Sep 2004 18:03:36 GMT

View Forum Message <> Reply to Message

guarda,

if you build a matrix with the n vectors (the weights) and then you write

w\*a

idl performs the multiplication element by element lascia stare diag\_matrix che complica solo le cose, idl supporta le stesse notationi tra matrici e numeri e se scrivi w\*a ti fa direttamente il conto che vuoi tu.

but first you have to build the matrix out of the set of weight vectors

## ciao

- > I have the following problem: given a matrix A(n,m) and a vector of
- > weighting factors w(n), i need to multiply each row of the matrix
- > A(i,\*)by the corresponding weighting factor w(i).

>

- > I know that I can simply "transform" the w vector into a diagonal
- > matrix with diag\_matrix and then multiply it with A (e.g.: result =
- > A##diag\_matrix(w)), but for large values of n this solution is very
- > slow.

>

> Can anybody suggest me a faster approach to solve this problem?

>

> Thanks in advance for the help,

>

> Lorenzo Busetto

>

- > Remote Sensing Lab.
- > University of Milano-Bicocca.

Subject: Re: multiplication by a diagonal matrix Posted by lbusett on Wed, 08 Sep 2004 12:50:12 GMT

View Forum Message <> Reply to Message

Hi all,

thanks for your answers!

I made some tests with different methods and for a matrix A(10000,10)I had the following results:

"diag\_matrix" method : processing time = 1600 seconds (!!)
"for loop" method: processing time = 0.02 seconds
"replicate" method (as suggested by Paolo Grigis in his answer):

processing time = 0.002 seconds

Well, when I posted my message I'd never expected to increase the speed 800000 times! Can it be possible?

Thanks for the help.

Lorenzo Busetto

Remote Sensing Lab. University of Milano-Bicocca