
Subject: Re: OO IDL
Posted by Michael Wallace on Thu, 16 Sep 2004 03:40:03 GMT
View Forum Message <> Reply to Message

There are definite benefits to OO, but OO isn't something to use in all
places. From the problem you outlined, I don't see any distinct
advantage of the OO approach. Personally, I'd be more apt to use OO
since I am much more of an OO programmer than a procedural one.
However, if you feel more comfortable with the procedural approach, go
with it.

-Mike

Robert Barnett wrote:
>
> I'm curious about common ways to call differing versions of code. I have
> implemented OO (Object Oriented) IDL to achieve this common task and
> wanted to know what peoples thoughts might be.
>
> I have several routines, each which have many different versions. In
> many cases, no version is any more recent than any other. It's more that
> each version is applicable for different problems.
>
> The programs are in their own .pro files, with the filename and function
> name being the same so that autoloading works. They are also in
> lowercase so that autoloading works correctly. The version is just
> appended onto the end like so:
>
> cost_function_mem.pro
> cost_function_lb.pro
> cost_function_sr.pro
> ...
>
> simplex_fast.pro
> simplex_slow.pro
> ...
>
> ... and on it goes
>
> This means that I have to do lots of calls to CALL_FUNCTION becuase I
> only know what version I am to use at runtime.
>
> I'm having a play around with OO IDL and seeing if there is a way to do
> this without using CALL_FUNCTION, and seeing if there are any advantages
> in doing so.
>
> The only way I can see to avoid the use of CALL_FUNCTION is to create a

Page 1 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4911
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=19887&goto=41039#msg_41039
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=41039
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> class for each function.
>
> mem::cost_function
> lb::cost_function
> sr::cost_function
> ...
>
> fast::simplex
> slow::simplex
> ...
>
> It is now possible to call a cost function like so:
> cf -> cost_function()
> Where cf could be
> cf = obj_new('mem')
> cf = obj_new('lb')
> cf = obj_new('sr')
>
> Unfortunatley, this causes a maintainence issue with structures. I now
> also need to define
> mem__define
> lb__define
> sr__define
> fast__define
> slow__define
> However, is it easy to write a trivial shell or perl script for
> generating these.
>
> It seems that both OO and CALL_FUNCTION require the same number of lines
> of code aside from the maintainence of the OO structures.
>
> Some advantages of OO may be
> * The ability for objects to inherit each other, thus being able to use
> each others methods.
> * Each class has its own namespace, ensuring that all methods which are
> not in conflict with other versions
> * Each class could have instance data, thus saving effort in passing
> information down the call stack and back again.
>
> Disadvantages
> * It may not be entirely obvious where instance data comes from
> * It may not be entirely obvious which objects inherit each other
> * A change in class struct definitions requires IDL to restart.
>
> The advantages of OO, although desirable don't seem to have a huge
> impact. Makes me wonder if anyone has an IDL OO success story.
>

Page 2 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: OO IDL
Posted by Craig Markwardt on Thu, 16 Sep 2004 03:47:05 GMT
View Forum Message <> Reply to Message

Robert Barnett <retsil@zipworld.com.au> writes:
[snip]
>
> This means that I have to do lots of calls to CALL_FUNCTION becuase I
> only know what version I am to use at runtime.
...

I'm not sure I follow. I would normally only use CALL_FUNCTION once,
and decide on the function string to use at run-time. If you mean you
still have to select which function to use, well, yes, that's true,
but we are really only talking about a few lines of code here, right?

The other option is to code one function with many different cost
functions inside, and then select it using a keyword, as in:

function my_cost_function, ..., method=string

 case strupcase(string) of
 'MEMB': value = ...
 'LB' : value = ...
 'SR' : value = ...
 end

 return, value
end

This allows you to only have one file with many different functions.

You could do something similar with objects as well I guess.

Good luck,
Craig

--
 -- --------------
Craig B. Markwardt, Ph.D. EMAIL: craigmnet@REMOVEcow.physics.wisc.edu
Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response
 -- --------------

Subject: Re: OO IDL
Posted by marc schellens[1] on Thu, 16 Sep 2004 05:13:50 GMT
View Forum Message <> Reply to Message

Page 3 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=19887&goto=41038#msg_41038
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=41038
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3394
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=19887&goto=41035#msg_41035
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=41035
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Robert Barnett wrote:
>
> I'm curious about common ways to call differing versions of code. I have
> implemented OO (Object Oriented) IDL to achieve this common task and
> wanted to know what peoples thoughts might be.
>
> I have several routines, each which have many different versions. In
> many cases, no version is any more recent than any other. It's more that
> each version is applicable for different problems.
>
> The programs are in their own .pro files, with the filename and function
> name being the same so that autoloading works. They are also in
> lowercase so that autoloading works correctly. The version is just
> appended onto the end like so:
>
> cost_function_mem.pro
> cost_function_lb.pro
> cost_function_sr.pro
> ...
>
> simplex_fast.pro
> simplex_slow.pro
> ...
>
> ... and on it goes
>
> This means that I have to do lots of calls to CALL_FUNCTION becuase I
> only know what version I am to use at runtime.
>
> I'm having a play around with OO IDL and seeing if there is a way to do
> this without using CALL_FUNCTION, and seeing if there are any advantages
> in doing so.
>
> The only way I can see to avoid the use of CALL_FUNCTION is to create a
> class for each function.
>
> mem::cost_function
> lb::cost_function
> sr::cost_function
> ...
>
> fast::simplex
> slow::simplex
> ...

What about the CASE statement?

CASE version of

Page 4 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

'slow' : result = simplex_slow()
'fast' : result = simplex_fast()
ENDCASE

Or use a keyword in your functions:

result = simlpex(VERSION='fast')

> It is now possible to call a cost function like so:
> cf -> cost_function()
> Where cf could be
> cf = obj_new('mem')
> cf = obj_new('lb')
> cf = obj_new('sr')
>
> Unfortunatley, this causes a maintainence issue with structures. I now
> also need to define
> mem__define
> lb__define
> sr__define
> fast__define
> slow__define
> However, is it easy to write a trivial shell or perl script for
> generating these.

You don't want to create (and don't forget to destroy later) an object
just to call a function! And how do you create it? Using CASE :-)

> It seems that both OO and CALL_FUNCTION require the same number of lines
> of code aside from the maintainence of the OO structures.
>
> Some advantages of OO may be
> * The ability for objects to inherit each other, thus being able to use
> each others methods.
> * Each class has its own namespace, ensuring that all methods which are
> not in conflict with other versions
> * Each class could have instance data, thus saving effort in passing
> information down the call stack and back again.
>
> Disadvantages
> * It may not be entirely obvious where instance data comes from

Do you mean where the object was created?
It is as obvious as where any other data came from.

> * It may not be entirely obvious which objects inherit each other

Page 5 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Just look at the OBJECTNAME__DEFINE procedure.

> * A change in class struct definitions requires IDL to restart.

or at least .RESET_SESSION, but if you use a struct instead it is the
same, see below.

> The advantages of OO, although desirable don't seem to have a huge
> impact. Makes me wonder if anyone has an IDL OO success story.

Well, I think OO isn't exactly about your problem.
OO is about (object's) data and methods (functions) which work on
this (object's) data (SELF).

The advantages do have huge impact in programs where
complex data structures are used.
If you have only arrays of fixed size and fairly simple program
logic, probably you don't need objects indeed.

marc

Page 6 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

