
Subject: How can I integrate? (easy question?)
Posted by [bdb112](#) on Wed, 20 Mar 1991 12:37:28 GMT
[View Forum Message](#) <> [Reply to Message](#)

How can I efficiently do a running sum of a vector (integrate)? The explicitly coded version (IDL v2)
for $i=1, n-1$ $x(i)=x(i) + x(i-1)$ achieves the desired effect, but takes (VS3100) 1 second for a 2000 element array compared to .01 sec for $z=x+x$, a similar number of operations. This is such an obvious thing to do that I must be missing something obvious - I can't find it in the userlib either (just deriv).

Subject: Re: How can I integrate? (easy question?)
Posted by [bruce](#) on Fri, 22 Mar 1991 00:22:39 GMT
[View Forum Message](#) <> [Reply to Message](#)

maybe you just want TOTAL(x).

--

-Bruce
"Just half a turn and there's your worm!"

-Bob Bet Bait Box

Subject: Re: How can I integrate? (easy question?)
Posted by [ramesh](#) on Mon, 25 Mar 1991 17:33:17 GMT
[View Forum Message](#) <> [Reply to Message](#)

In article <1991Mar20.233728.1@csc.anu.edu.au> [bdb112@csc.anu.edu.au](#) writes:
> How can I efficiently do a running sum of a vector (integrate)? The explicitly
> coded version (IDL v2)
> for $i=1, n-1$ $x(i)=x(i) + x(i-1)$ achieves the desired effect, but takes (VS3100)
> 1 second for a 2000 element array compared to .01 sec for $z=x+x$, a similar
> number of operations. This is such an obvious thing to do that I must be
> missing something obvious - I can't find it in the userlib either (just
> deriv).

Assuming "i" represents the current array index value upto which you want to sum the elements of the array "x", try:

`sum_x = total(x(0:i))`

or a variation thereof. The dimension of array "sum_x" will be automatically dimensioned to the value contained in "i"

Note: Function "total" is a PV Wave system routine.

R.V.

Subject: Re: How can I integrate? (not so easy?)

Posted by [bdb112](#) on Mon, 25 Mar 1991 20:18:41 GMT

[View Forum Message](#) <> [Reply to Message](#)

In article <1991Mar20.233728.1@csc.anu.edu.au>, bdb112@csc.anu.edu.au writes:

> How can I efficiently do a running sum of a vector (integrate)? The explicitly
> coded version (IDL v2)
> for i=1,n-1 x(i)=x(i) + x(i-1) achieves the desired effect, but takes (VS3100)
> 1 second for a 2000 element array compared to .01 sec for z=x+x, a similar
> number of operations. This is such an obvious thing to do that I must be
> missing something obvious - I can't find it in the userlib either (just
> deriv).

Two respondents have suggested

sum_x = total(x(0:i)) ; where i is the maximum index of the array

When I try this, I get a scalar result, rather like a definite integral, when
what I want is a vector which is a running total, like an indefinite integral.

e.g. x = [1,1,2] sum_x = [1,2,4]

Of course, the next step would be to allow an optional vector which contained
the abscissae, if not equally spaced, or the spacing if equally spaced, but I
would be happy with the simple result.
