Subject: distribution of colors for an image Posted by R.Bauer on Tue, 26 Oct 2004 17:05:43 GMT

View Forum Message <> Reply to Message

Dear all,

Did someone know a routine to show in a simple XY Plot the distribution of colors for an image?

cheers

Reimar

Subject: Re: distribution of colors for an image Posted by R.Bauer on Wed, 27 Oct 2004 13:37:16 GMT View Forum Message <> Reply to Message

Karsten Rodenacker wrote:

- > Perhaps
- > u=uniq(long(a),sort(long(a)))
- > help,u,h
- > U LONG = Array[15] > H LONG = Array[15]
- > tends in the direction of understanding?

Oh I see the dist function was a bad example to use Thanks for this hint.

:-)

Reimar

```
> Regards
> Karsten
> On Wed, 27 Oct 2004 13:32:13 +0200, Reimar Bauer
> <R.Bauer@fz-juelich.de> wrote:
> David Fanning wrote:
```

```
>>
>>> Reimar Bauer writes:
>>>
>>>> Did someone know a routine to show in a simple XY Plot the
>>>> distribution of colors for an image?
>>>
      I think that is called a histogram, Reimar. :-)
>>>
>>> Cheers,
     David
>>>
>>>
>>
>>
>> fine, I have seen a lot of instruction on your marvellous web page.
>>
   But I don't understand the result I got. Lets show an example.
>>
>> a=dist(20)
>> h=histogram(a)
>> print,max(a),max(h)
        14.1421
                      56
>>
>>
>> u=uniq(a,sort(a))
>> help,u,h
                        = Array[61]
>> U
              LONG
>> H
              LONG
                        = Array[15]
>>
>> Why could be h higher as a?
>> Why doesn't I got a vector length of 61 as uniq tells?
>>
>>
>> More and more I believe the first question does not describe what I
   want..
>>
>>
>> Reimar
>>
>>
>>
>
>
Reimar Bauer
```

Institut fuer Stratosphaerische Chemie (ICG-I)

Forschungszentrum Juelich email: R.Bauer@fz-juelich.de

a IDL library at ForschungsZentrum Juelich http://www.fz-juelich.de/icg/icg-i/idl_icglib/idl_lib_intro. html

Subject: Re: distribution of colors for an image Posted by R.Bauer on Wed, 27 Oct 2004 13:57:00 GMT View Forum Message <> Reply to Message

```
David Fanning wrote:
> Reimar Bauer writes:
>
>
>> fine, I have seen a lot of instruction on your marvellous web page.
>>
>> But I don't understand the result I got. Lets show an example.
>> a=dist(20)
>> h=histogram(a)
>> print,max(a),max(h)
>>
       14.1421
                      56
>>
>>
>> u=uniq(a,sort(a))
>> help,u,h
                        = Array[61]
>> U
              LONG
>> H
              LONG
                        = Array[15]
>> Why could be h higher as a?
>> Why doesn't I got a vector length of 61 as uniq tells?
>
>
> You asked about color distribution in an image. A histogram
> will tell you (with a byte scaled image, of course) how many
> pixels in the image have a particular color. It will even
> tell you which pixels those are, but that is another story,
  best explained with JD's Histogram Tutorial.
>
>
> In your case H is fifteen elements long, because your data
> had values between 0 and 15, and you used a bin size of 1,
> by default. The *numbers* returned from histogram, told you
> the pixel distribution of those 15 "colors". In one bin, for
 example, you had 56 pixels values that fell into that bin.
>
```

> You had 61 unique numbers in your data, but all 61 of them fell

```
> into one of the 15 bins you set up.
>
> To see your color distribution, you want to plot the histogram
> of your data:
>
>
    data = dist(200)
    Plot, Histogram(data), XStyle=1, $
>
     XTitle='Color Distribution', YTitle='Number of Pixels'
> Does that help?
```

Yes, this is very good explained.

Now it is clear and I know why I was so irritated of the result I got.

I have used a circular clipping of an image and have missed that's histogram uses always rectangular input. The background color which clips the data to invisible is count highest. If I don't use max_value I see nothing on the plot.

Thanks for all help

Reimar

```
> Cheers,
> David
>
```

Reimar Bauer

Subject: Re: distribution of colors for an image Posted by JD Smith on Wed, 27 Oct 2004 17:27:17 GMT View Forum Message <> Reply to Message

On Wed, 27 Oct 2004 15:57:00 +0200, Reimar Bauer wrote:

```
> David Fanning wrote:
>> Reimar Bauer writes:
>>
>>
>>> fine, I have seen a lot of instruction on your marvellous web page.
>>> But I don't understand the result I got. Lets show an example.
>>>
>>> a=dist(20)
>>> h=histogram(a)
>>> print,max(a),max(h)
        14.1421
                       56
>>>
>>>
>>> u=uniq(a,sort(a))
>>> help,u,h
>>> U
                         = Array[61]
               LONG
                         = Array[15]
>>> H
               LONG
>>>
>>> Why could be h higher as a?
>>> Why doesn't I got a vector length of 61 as unig tells?
>>
>>
>> You asked about color distribution in an image. A histogram
>> will tell you (with a byte scaled image, of course) how many
>> pixels in the image have a particular color. It will even
>> tell you which pixels those are, but that is another story,
>> best explained with JD's Histogram Tutorial.
>>
>> In your case H is fifteen elements long, because your data
>> had values between 0 and 15, and you used a bin size of 1,
>> by default. The *numbers* returned from histogram, told you
```

```
>> the pixel distribution of those 15 "colors". In one bin, for
>> example, you had 56 pixels values that fell into that bin.
>>
>> You had 61 unique numbers in your data, but all 61 of them fell
>> into one of the 15 bins you set up.
>>
>> To see your color distribution, you want to plot the histogram
>> of your data:
>>
     data = dist(200)
>>
>>
     Plot, Histogram(data), XStyle=1, $
       XTitle='Color Distribution', YTitle='Number of Pixels'
>>
>>
>> Does that help?
>>
>
  Yes, this is very good explained.
> Now it is clear and I know why I was so irritated of the result I got.
>
>
> I have used a circular clipping of an image and have missed that's
> histogram uses always rectangular input. The background color which
> clips the data to invisible is count highest. If I don't use max value I
> see nothing on the plot.
```

Another way to recover all 61 of your input values, illustrating how bin size has everything to do with the number of non-zero histogram elements:

```
IDL> a=dist(20)
IDL> h=histogram(a,BINSIZE=.05)
IDL> wh=where(h gt 0,cnt)
IDL> print,cnt
61
```

But beware of using HISTOGRAM on floating point data in cases where you care whether a given value falls in one bin or another (see the "razor's edge" article http://www.dfanning.com/math_tips/razoredge.html).

JD