Subject: Re: modulo reset

Posted by Wayne Landsman on Tue, 23 Nov 2004 15:52:53 GMT

View Forum Message <> Reply to Message

Ralf Schaa wrote:

- > I'm reading out some binary data and the description says this about a
- > data field:

>

> in the case of a modulo reset add 2^32

>

- > What is this about? googling for "modulo reset" didn't get me far;
- > I only imagine that I need some kind of overflow to get things fixed,
- > but it is very unclear to me what is happening and why ...

Well, my first guess is that you are working with unsigned 32bit integers which have a maximum value of 2^32-1, and then resets to zero.

STIS>print,2UL^31,2UL^32 2147483648 0

The easiest way to correct for this reset would be to use 64 bit integers

data = ulong64(datafield) + 2ULL^32

A less likely possiblity is that "modulo reset" refers to a 32bit checksum, e.g. as implemented in http://idlastro.gsfc.nasa.gov/ftp/pro/misc/checksum32.pro which includes links to more documentation.

Good Luck, --Wayne Landsman

Subject: Re: modulo reset

Posted by Ralf Schaa on Tue, 23 Nov 2004 16:39:58 GMT

View Forum Message <> Reply to Message

Wayne Landsman wrote:

> Ralf Schaa wrote:

>

- >> I'm reading out some binary data and the description says this about a
- >> data field:
- >>
- >> in the case of a modulo reset add 2^32

>>

- >> What is this about? googling for "modulo reset" didn't get me far;
- >> I only imagine that I need some kind of overflow to get things fixed,
- >> but it is very unclear to me what is happening and why ...

>

>

- > Well, my first guess is that you are working with unsigned 32bit
- > integers which have a maximum value of 2^32-1, and then resets to zero.

>

- > STIS>print,2UL^31,2UL^32
- > 2147483648

0

> The easiest way to correct for this reset would be to use 64 bit integers

>

>

> data = ulong64(datafield) + 2ULL^32

>

- > A less likely possiblity is that "modulo reset" refers to a 32bit
- > checksum, e.g. as implemented in
- > http://idlastro.gsfc.nasa.gov/ftp/pro/misc/checksum32.pro
- > which includes links to more documentation.

thanks wayne,

but the problem is this:

I am reading binary data (not longer than 32 bit, and I store it in ULL as suggested) and the 'modulo reset' I talked about may appear at one datafield: that is in an accumulated "Doppler" cycle count.

By differentiating with respect to time, one can get the true doppler count.

Than the documentation says, when a modula reset occurs, add 2^32.

I think, this means when the counter is full and is starting with zero again. than add the 2^32.

But I don't see what adding 2^32 exactly would do ...

further suggestions?

-Ralf

Subject: Re: modulo reset

Posted by James Kuyper on Tue, 23 Nov 2004 18:51:30 GMT

View Forum Message <> Reply to Message

Ralf Schaa wrote:

. .

- > I am reading binary data (not longer than 32 bit, and I store it in ULL
- > as suggested)
- > and the 'modulo reset' I talked about may appear at one datafield: that
- > is in an accumulated
- > "Doppler" cycle count.
- > By differentiating with respect to time, one can get the true doppler
- > count.

"Differencing", not "Differentiating". You differentiate a continuous

function of time. For a discontinuously sampled function, you can't differentiate, you can only calculate finite differences.

- > Than the documentation says, when a modula reset occurs, add 2^32.
- > I think, this means when the counter is full and is starting with zero
- > again. than add the 2^32.
- > But I don't see what adding 2^32 exactly would do ...

Let's assume that the current cycle count is $t0=2^32-5$. 20 cyles later the true count would be 2^32+15 . However, because it reset at 2^32 , the actual number in the cycle count would be t1=15. If you calculate the time difference as dt = t1-t2 while storing the value in, for instance, a 64 byte integer or floating point type, then the dt will be $15-(2^32-5) = 20-2^32$. To get the correct number of cycles, you have to add in 2^32 , leaving you with dt = 20.