Subject: Structures
Posted by Michael Wallace on Tue, 01 Mar 2005 21:29:21 GMT

View Forum Message <> Reply to Message

This isn't a problem, just an academic question. I'm curious why IDL
does what it does, but aren't we all?

Once you create a structure, you cannot change type of the variables
within the structure, including array sizes. Once the structure is

created and named, you can't change an integer array[100] to an integer
array[10] or anything else with a different size. This came as a

surprise to me since | think of "int array" as being the type, not "int
array[100]" or "int array[10]". Why does IDL enforce such a rigid
structure on structures when the rest of the language which leaves you
free to change types, sizes and everything else under the sun? It just
doesn't seem to mesh with the rest of the language.

| learned all this the hard way by trying to figure out why | kept

getting errors when I'd attempt to use a different array size for some

of my structure variables. 1 finally ran across this in the IDL

documentation, but there wasn't any actual reason given for such

draconian policy, especially when compared to the rest of the language.
It's really not a big deal since | can create anonymous structs

everywhere instead of using named structures. Do named structures

actually serve a useful purpose other letting you condense your syntax

when creating them?

-Mike

Page 1 of 1 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4911
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=20659&goto=42921#msg_42921
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=42921
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

