
Subject: Re: On Pointers and Culture
Posted by Antonio Santiago on Fri, 04 Mar 2005 08:16:10 GMT
View Forum Message <> Reply to Message

Michael Wallace wrote:
> I've finally reached an impasse in my IDL programming. Arrays just
> aren't doing it for me anymore. As of a few minutes ago I starting
> teaching myself IDL pointers. Does IDL already have implementations of
> the common data structures such as stacks, queues and trees or will I
> need to compose my own? I figured it was easier to ask the group and go
> to bed (it's 1:30AM local time) and see responses in the morning than
> trying to slog through IDL documentation at such a late hour. Although
> the documentation would probably make better sense now...
>
> -Mike

You can found basic data structures in RSI user contributed library
(http://www.rsinc.com/codebank/search.asp?search=category& ;product=IDL&catid=16)
. See the hashtable and vector.

Also D.Fanning has a linkedlist implementation
(http://www.dfanning.com/programs/linkedlist__define.pro)

and Craig Markwardt has an implemententation of hash
(http://cow.physics.wisc.edu/~craigm/idl/down/hashtable__defi ne.pro).

With all this you have: hashtables, lists and staks.

If you are new on IDL pointers remember are not the same as C pointers.
Now you have your "conventional" memory (managed by IDL) and the HEAP
memory (managed by yourself).

a = INDGEN(100)
p = PTR_NEW(a)

This lines creates an 'a' vector and 'p' pointer variable in the
conventional memory, also copies the same 'a' vector into HEAP memory a
makes 'p' points this.
Maybe, it is better:

p = PTR_NEW(INDGEN(100))

Now, you only have a 'p' pointer variable in conventional memory and an
array in the HEAP memory.

Bye.
Antonio

Page 1 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4959
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=20680&goto=42994#msg_42994
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=42994
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

(Sorry about mu poor enligh :)

Subject: Re: On Pointers and Culture
Posted by David Lopez Pons on Fri, 04 Mar 2005 11:25:49 GMT
View Forum Message <> Reply to Message

> a = INDGEN(100)
> p = PTR_NEW(a)
>
> This lines creates an 'a' vector and 'p' pointer variable in the
> conventional memory, also copies the same 'a' vector into HEAP memory
> a makes 'p' points this.
> Maybe, it is better:
>
> p = PTR_NEW(INDGEN(100))
>
> Now, you only have a 'p' pointer variable in conventional memory and
> an array in the HEAP memory.
>
You also can do this to avoid the memory duplication:

a = INDGEN(100)
p = PTR_NEW(a,/NOCOPY)

It's easier if you want to fill 'a' with some sort of complex data :)

> Bye.
> Antonio
>
> (Sorry about mu poor enligh :)

mee too.

Cheers
DLo.

Subject: Re: On Pointers and Culture
Posted by Antonio Santiago on Fri, 04 Mar 2005 13:13:02 GMT
View Forum Message <> Reply to Message

> You also can do this to avoid the memory duplication:
>
> a = INDGEN(100)
> p = PTR_NEW(a,/NOCOPY)
>

Page 2 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4751
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=20680&goto=42991#msg_42991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=42991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4959
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=20680&goto=42989#msg_42989
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=42989
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> It's easier if you want to fill 'a' with some sort of complex data :)
>

Yes, but 'a' will be undefined with the /NO_COPY keyword:

IDL> .reset
IDL> a=INDGEN(100)
IDL> help, a
A INT = Array[100]
IDL> p=PTR_NEW(a, /NO_COPY)
IDL> help, a, p
A UNDEFINED = <Undefined>
P POINTER = <PtrHeapVar3>
IDL> help, /heap
Heap Variables:
 # Pointer: 1
 # Object : 0

<PtrHeapVar3> INT = Array[100]
IDL>

PD: I think you make me pretty familiar XD

Bye.
Antonio.

Subject: Re: On Pointers and Culture
Posted by David Fanning on Fri, 04 Mar 2005 14:05:14 GMT
View Forum Message <> Reply to Message

Antonio Santiago writes:

> If you are new on IDL pointers remember are not the same as C pointers.

Another way they are different, and this surprises even
people who have used them for awhile, is that they are
much more forgiving of rough handling. More like
IDL variables, really, than pointers. So you can
do something like this:

 ptr = Ptr_New([1,4,6]) ; Pointer to array
 *ptr = 8.4 ; Pointer now points to scalar
 Print, *ptr
 8.4

And there is no leaking of memory because IDL

Page 3 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=20680&goto=42987#msg_42987
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=42987
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

manages all this for you, as it does with variables.
Naturally, this is dangerous, etc., but it is
so, so nice. :-)

Cheers,

David

--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: On Pointers and Culture
Posted by Benjamin Hornberger on Fri, 04 Mar 2005 15:46:58 GMT
View Forum Message <> Reply to Message

Michael Wallace wrote:
> teaching myself IDL pointers. Does IDL already have implementations of
> the common data structures such as stacks, queues and trees or will I
> need to compose my own?

Mark Hadfield's "motley" library has a stack and a queue (and maybe
more, but that's what I used so far). It's supposed to be hosted on
David's web site, but I can't find it now. The link on the tips page is
dead. David?

Benjamin

Subject: Re: On Pointers and Culture
Posted by Benjamin Hornberger on Fri, 04 Mar 2005 15:47:47 GMT
View Forum Message <> Reply to Message

Michael Wallace wrote:
> teaching myself IDL pointers. Does IDL already have implementations of
> the common data structures such as stacks, queues and trees or will I
> need to compose my own?

Mark Hadfield's "motley" library has a stack and a queue (and maybe
more, but that's what I used so far). It's supposed to be hosted on
David's web site, but I can't find it now. The link on the tips page is
dead. David?

Benjamin

Page 4 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=20680&goto=42985#msg_42985
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=42985
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=20680&goto=42984#msg_42984
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=42984
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: On Pointers and Culture
Posted by David Fanning on Fri, 04 Mar 2005 16:04:38 GMT
View Forum Message <> Reply to Message

Benjamin Hornberger writes:

> Mark Hadfield's "motley" library has a stack and a queue (and maybe
> more, but that's what I used so far). It's supposed to be hosted on
> David's web site, but I can't find it now. The link on the tips page is
> dead. David?

Whoops! Fixed now. Sorry.

Cheers,

David

--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: On Pointers and Culture
Posted by David Fanning on Fri, 04 Mar 2005 16:06:05 GMT
View Forum Message <> Reply to Message

David Fanning writes:

> Whoops! Fixed now. Sorry.

Guess I could have given poor Mark a plug:

 http://www.dfanning.com/hadfield/idl/README.html

Cheers,

David
--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: On Pointers and Culture
Posted by JD Smith on Fri, 04 Mar 2005 20:01:09 GMT
View Forum Message <> Reply to Message

Page 5 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=20680&goto=42983#msg_42983
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=42983
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=20680&goto=42982#msg_42982
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=42982
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=20680&goto=42977#msg_42977
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=42977
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

On Fri, 04 Mar 2005 07:05:14 -0700, David Fanning wrote:

> Antonio Santiago writes:
>
>> If you are new on IDL pointers remember are not the same as C pointers.
>
> Another way they are different, and this surprises even people who have
> used them for awhile, is that they are much more forgiving of rough
> handling. More like IDL variables, really, than pointers. So you can do
> something like this:
>
> ptr = Ptr_New([1,4,6]) ; Pointer to array *ptr = 8.4 ; Pointer now
> points to scalar Print, *ptr
> 8.4
>
> And there is no leaking of memory because IDL manages all this for you, as
> it does with variables. Naturally, this is dangerous, etc., but it is so,
> so nice. :-)

Not only are pointer variables "more like IDL variables", they *are*
IDL variables. Full, regular old variables, which, rather than having
a name (like myVar) and local scope inside your routine, have a global
scope and a heap variable number. E.g., try:

IDL> p=ptr_new(1)
IDL> help,/heap
Heap Variables:
 # Pointer: 1
 # Object : 0

<PtrHeapVar1> INT = 1

Note that there are two parts to a pointer: the pointer variable (here
`p'), and the "heap" variable it refers to (here `PtrHeapVar1'). The
latter cannot be accessed, except through the former, using the
infamous dereference ("*") operator. Actually more than one pointer
variable can refer to the same heap variable (or none can! --- see
below).

Think of a pointer variable as holding nothing besides than a little
slip of paper which says "Go look at pointer heap variable #1". That
PtrHeapVar1 is a real variable, again, it just has global scope and an
unusual way to access it. I can do anything to it I could do to a
real variable:

IDL> *p=findgen(10,10)
IDL> help,/heap
Heap Variables:

Page 6 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 # Pointer: 1
 # Object : 0

<PtrHeapVar2> FLOAT = Array[10, 10]

I just changed the contents of that heap variable. And no, this
is no more dangerous than doing this:

IDL> a=1
IDL> a=findgen(10,10)

Here's another important aspect of the "pointer heap variables are
just regular variables" rule: I can pass memory *without copying*
between "real" and "heap" variables, using TEMPORARY. Let's try it:

IDL> *p=lindgen(250000000L)
IDL> a=temporary(*p)
IDL> help,/heap
Heap Variables:
 # Pointer: 1
 # Object : 0

<PtrHeapVar1> UNDEFINED = <Undefined>
IDL> help,/memory
heap memory used: 1000969834, max: 1000969930, gets: 7404, frees: 7060
IDL> *p=temporary(a)
IDL> help,/memory
heap memory used: 1000969871, max: 1000969890, gets: 7407, frees: 7061

Notice this proceeds quite rapidly, and without any additional memory
used: IDL just transferred PtrHeapVar1's data content in memory to a,
and then back. What about poor PtHeapVar1 in the meantime? It's
still there, it's just undefined, just like a regular variable would
be (because again, it *is* a regular variable). What if I just try to
copy the data directly:

IDL> a=*p
<__long__ delay while copying that 1GB of data into the swap>
IDL> help,/memory
heap memory used: 2000969853, max: 2000969964, gets: 7411, frees: 7063

Ouch! So remember, pointers are lightweight (remember the slip of
paper?), but their contents aren't necessarily (in fact usually not).

What about passing variables by reference into routines, can we do
that? Try compiling this little procedure:

pro set_to_twelve,a

Page 7 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 a=12
end

And then:

IDL> help,/heap
Heap Variables:
 # Pointer: 1
 # Object : 0

<PtrHeapVar1> LONG = Array[250000000]
IDL> set_to_twelve,*p
IDL> help,/heap
Heap Variables:
 # Pointer: 1
 # Object : 0

<PtrHeapVar1> INT = 12

Yes! We see that *p (aka PtrHeapVar1) is just as good as a "regular"
variable, like "a" (again, because it *is* a regular variable -- OK
I'll quit beating the deceased equine). But wait, it gets even
better! You know how you can't pass, say, a structure member by
reference?

IDL> st={val:1}
IDL> set_to_twelve,st.val
IDL> print,st
{ 1}

Hmmm, that's not what we wanted. A standard trap most IDL users learn
to tiptoe around early on. But, let's say st.val was a pointer.
Watch carefully, nothing up my sleeves:

IDL> *p=0
IDL> st={val:p}
IDL> print,*st.val
 0
IDL> set_to_twelve,*st.val
IDL> print,*st.val
 12

Oh yea, passing a structure member by reference (sort of)! Glorious.

What if you lose that pointer variable `p'? Just because PtrHeapVar1
is on a global heap, doesn't mean the regular pointer variable `p'
(remember, the slip of paper) is available everywhere. It has a
normal scope just like all non-heap variables, and can disappear if

Page 8 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

you're careless:

IDL> help,p
P POINTER = <PtrHeapVar1>
IDL> delvar,p ;; whoops, lost it!
IDL> help,/heap
Heap Variables:
 # Pointer: 1
 # Object : 0

<PtrHeapVar1> INT = 12

There's our heap variable sitting there with nobody pointing to him.
What ever to do? If you're desperate, you can:

IDL> new_p=ptr_valid(1,/CAST)
IDL> print,*new_p
 12

We've recovered our pointer heap variable, saving him from certain death.
What form of death would that be? Well, if again we lose track of that
heap variable, and use HEAP_GC, like the grim reaper it harvests poor
PtrHeapVar1 with a quick stroke of the scythe:

IDL> delvar,new_p
IDL> heap_gc,/verbose
<PtrHeapVar1> INT = 12
IDL> help,/heap
Heap Variables:
 # Pointer: 0
 # Object : 0

Alas, poor PtrHeapVar1, I knew him well.

Forget what you know about pointers. IDL pointers are not like
pointers in C or most other languages you've used. They are a bit
akin to "references" in some languages. You've seen many of their
advantages, but what about disadvantages? Well, although lightweight
in IDL terms, when compared to, e.g., C pointers, they are fairly
heavy, since they contain all of the baggage, and ability to take on
any form, of regular IDL variables (which they actually are!... oh
sorry).

What this means is that the familiar pointer-based data structures you
know and love, like trees and multiply linked lists, can of course be
implemented using IDL pointers, but they are typically much slower than
you might like, especially if they require lots and lots of pointers to
define their structure (as trees do, for instance). In C, a linked list

Page 9 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

can compare favorably to an array in terms of linear searches, etc. (and
is much faster for arbitrary insertion). In IDL, you'll probably find
WHERE on an array to be many hundreds of times faster than searching a
linked-list using IDL pointers. So what does that mean? If you have a
favorite data structure that would revolutionize your programming, beg RSI
to implement it as a built-in (my top choice would be a real hash object).

There's lots more to know (like how to use precedence to interact with
deeply nested pointer data), but that's the basic story.

JD

Subject: Re: On Pointers and Culture
Posted by David Fanning on Fri, 04 Mar 2005 20:28:44 GMT
View Forum Message <> Reply to Message

JD Smith writes:

> Not only are pointer variables "more like IDL variables", they *are*
> IDL variables.

Alright! Another tutorial!!

But I do take issue with this:

> IDL> *p=findgen(10,10)
> IDL> help,/heap
> Heap Variables:
> # Pointer: 1
> # Object : 0
>
> <PtrHeapVar2> FLOAT = Array[10, 10]
>
> I just changed the contents of that heap variable. And no, this
> is no more dangerous than doing this:
>
> IDL> a=1
> IDL> a=findgen(10,10)

I think "no more dangerous" is like saying a handgun
is no more dangerous than a rifle. It don't matter much
if it's aimed at you! I will agree that a marksman who
has taken his Hunter Safety class to heart is probably
no immediate threat. :-)

Cheers,

Page 10 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=20680&goto=42976#msg_42976
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=42976
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

David

--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Page 11 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

