
Subject: C Alignment/IDL structures
Posted by joey on Wed, 16 Mar 2005 16:13:03 GMT
View Forum Message <> Reply to Message

Hi! I have an C library which I link into IDL using IDL_MakeStruct. The
structure I link in with IDL is not a true C structure, but a dynamic
structure I create on the fly depending on the data I wish to have within
IDL.

It works quite well; however, one of the elements incorporated in my
structure is another structure which I would like to add a double value.

When I add this double, my structure size seems to get the wrong size for
IDL to handle so nothing will work when accessing the structure. I compute
the size to a value which is the sum of all bytes in the structure which
obviously does not take into account the packing/aligning that C does.

My question is: is there a way I can figure out how many bytes to malloc
such that IDL and I will always be in agreement?

Even if we are in agreement, I need to know where the padding will occur so
I would like to have the same algorithm that IDL uses to compute its
structure allocation when given a list of tags.

If I stick to floats/long/int/etc/strings/etc. everything seems to work
great. Its only when adding the double that everything goes bad.

Thanks for any advice!

Joey

Subject: Re: C Alignment/IDL structures
Posted by Randall Skelton on Wed, 16 Mar 2005 18:07:33 GMT
View Forum Message <> Reply to Message

I'm not sure I completely understand what you are doing... can you post
a snipit of code? I trust that you are passing back an unnamed
structure from C as named structures are persistent in a given session.
 Hence, you should call as:

ptr = IDL_MakeStruct(NULL, mytags);

This is the reason the following fails:

IDL> a = {foo, a: 0, b: ''}
IDL> b = {foo, c: 0}
% Wrong number of tags defined for structure: FOO.

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5341
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=20730&goto=43098#msg_43098
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=43098
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5172
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=20730&goto=43195#msg_43195
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=43195
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Once 'foo' is defined, you cannot change its fields.

In general, when I have to pass C structures from existing code back to
IDL I do it by creating a shadow structure (in C) that uses all the
defined IDL types and copying the data. You really cannot rely on
generic C variables having the same size as thier IDL counterparts
(take a look at the definition of IDL_ALLTYPES in idl_export.h). You
can cheat a little when initializing arrays as you can point to the
memory in your existing structures if the sizes align, but everything
in the C structure should be defined with one of the macros given in
the EDG. I don't think you should be seeing any structure alignment
issues...

Cheers,
Randall

Subject: Re: C Alignment/IDL structures
Posted by joey on Mon, 21 Mar 2005 16:56:20 GMT
View Forum Message <> Reply to Message

Randall	 Skelton <randall.skelton@gmail.com> wrote:
> I'm not sure I completely understand what you are doing... can you post
> a snipit of code? I trust that you are passing back an unnamed

Here's my code that does the IDL/C interaction.	 I have a vector (_dataIDL)
which has all the values I want into IDL within it as a malloc'ed sets of
memory.

// Copy the real data

 unsigned long pos = 0;
 unsigned char *myStructureThatLooksLikeTags = malloc (_totalSpaceNeeded
 * _dataIDL.size ());
 for (unsigned int i = 0; i < _dataIDL.size (); i++) {
	memcpy (&(myStructureThatLooksLikeTags [pos]), _dataIDL [i],
 _totalSpaceNeeded);
	pos += _totalSpaceNeeded;
 }

 char idl_struct_name [100];
 sprintf (idl_struct_name, "%s_K%ld_V%d", dbVirtualName (data_key),
 data_key, version);

 void *idl_struct = IDL_MakeStruct (idl_struct_name, tags);
 IDL_LONG dims;
 dims = _dataIDL.size (); // number of elment in the array of structures

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5341
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=20730&goto=43159#msg_43159
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=43159
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 IDL_VPTR ivReturn = IDL_ImportArray (1, &dims, IDL_TYP_STRUCT,
 myStructureThatLooksLikeTags,
 cleanUpIDL, idl_struct);

> In general, when I have to pass C structures from existing code back to
> IDL I do it by creating a shadow structure (in C) that uses all the
> defined IDL types and copying the data. You really cannot rely on
> generic C variables having the same size as thier IDL counterparts
> (take a look at the definition of IDL_ALLTYPES in idl_export.h).

Ok, this probably answers my question.	I was hoping I could create an array
of structs, but this is maybe not so memory efficient so I might try to
create one structure with multiple arrays.

Joey

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

