
Subject: Save 2D conversion matrix
Posted by peter.albert@gmx.de on Mon, 07 Nov 2005 15:09:18 GMT
View Forum Message <> Reply to Message

Hi all,

I am currently working on the display of climate datasets. One window
shows a map with e.g. some monthly mean values. My plan now is to let
the user pick a location using CURSOR, and then to display a time
series at the chosen point in a second window. O.k., I can get the
latitude / longitude of the chosen point using CONVERT_COORD, then I
can pick the appropriate time series and plot it in the second window.
However, if I am now going back to the map window, the correlation
between device and data coordinates is of course gone. If it was 3D
data, I would use T3D, but this is plain 2D data and don't see the
appropriate feature in the documentation. Any help which would save me
from re-drawing this map over and over again would be appreciated.

N.b. this is all done using direct graphics. Is this finally the reason
to go ahead and read the manual about OO graphics?

Cheers,

 Peter

Subject: Re: Save 2D conversion matrix
Posted by David Fanning on Wed, 09 Nov 2005 08:45:09 GMT
View Forum Message <> Reply to Message

Peter Albert writes:

> Aehmm, well, this *is* part of a widget ... But now that you mention
> it, TRACKING_EVENTS of a draw widget might also work ... But that would
> mean that I have to drop the WIDGET_TIMER events now that I finally
> managed to use them ... :-)

Uh, well, it is Button and Motion events (along with their
cousins PRESS and RELEASE) that actually mirror and extend
what can be done with the CURSOR command in a draw widget.
With the draw widget event structure, there is really no
reason to find the CURSOR command anywhere near a widget
program. :-)

Cheers,

David

Page 1 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5483
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=21858&goto=46163#msg_46163
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=46163
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=21858&goto=46206#msg_46206
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=46206
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

P.S. And in old days (I doubt this is true now) the CURSOR
command, used in a draw widget, would actually return the
wrong values. But only slightly wrong, so that you wouldn't
realize they were wrong until the space probe was about to
crash into the planet. :-)

--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: Save 2D conversion matrix
Posted by peter.albert@gmx.de on Wed, 09 Nov 2005 10:36:09 GMT
View Forum Message <> Reply to Message

Hi David,

> Uh, well, it is Button and Motion events (along with their
> cousins PRESS and RELEASE) that actually mirror and extend

o.k., thanks. Actually, a long while ago I dropped working with draw
widgets because I wanted to be able to resize the draw window, which
appeared to be not actually trivial with draw widgets. Then there came
FSC_WINDOW and resizing the window as no longer a problem :-)

However, now I am using a plot command which can take several seconds
to be completed. The current version of FSC_WINDOW sets the
KBRD_Focus_Events keyword to WIDGET_CONTROL to 1, with the conseqence
that dragging the window accross the screen can easily take several
minutes... Well, this can be changed, and now I also wanted button and
motion events. Imho the appropriate event handling routine should not
be within the FSC_WINDOW source code, as any user might do something
different, so I added a keyword USER_EVENT_PRO, which should be the
name of a routine which just takes one parameter, namely the event
itself.

So there are 4 new keywords: BUTTON_EVENTS and MOTION_EVENTS, which are
passed through to WIDGET_DRAW, USER_EVENT_PRO which is used in the main
event handler, and KBRD_Focus_Events, which is passed through to
WIDGET_CONTROL.

I added the modified code in case you think it's a useful extension.

Cheers,

 Peter

Page 2 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5483
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=21858&goto=46203#msg_46203
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=46203
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;+
; NAME:
; FSC_WINDOW
;
; PURPOSE:
;
; This routine implements a "smart" resizeable graphics window.
; It is used as a wrapper for built-in IDL graphics procedures
; such as SURFACE, CONTOUR, PLOT, SHADE_SURF, etc. In additon,
; it can be used to display any user-written graphics procedure
; so long as that procedure follows three simple rules: (1) It
; does not open it's own graphics windows, (2) It is defined with
; no more than three positional arguments (an unlimited number
; of keyword arguments are allowed), and (3) It uses no device-
; specific commands, such as "WSet", "Device, Decomposed=1", etc.
;
; Keyword arguments permit the window to have its own portion
; of a color table and to be able to change the colors loaded in
; that portion of the color table. Colors are updated
; automatically on both 8-bit and 24-bit color displays. In
; addition, the window colors will "protect" themselves. I mean
; by this that the window will re-load its own colors into the
; color table when the window gains keyboard focus. This
; prevents other applications from changing the colors used to
; display data in this window. (This is an issue mainly in
; IDL 5 applications where widget applications can run
; concurrently with commands from the IDL command line.)
;
; Keyword arguments also permit the window to create output
; files of its contents. These files can be color and
; gray-scale PostScript, and color BMP, GIF, JPEG, PICT, PNG,
; TIFF, or JPEG files. Output can also be sent directly to
; the default printer.
;
; AUTHOR:
;
; FANNING SOFTWARE CONSULTING
; David Fanning, Ph.D.
; 1645 Sheely Drive
; Fort Collins, CO 80526 USA
; Phone: 970-221-0438
; E-mail: davidf@dfanning.com
; Coyote's Guide to IDL Programming: http://www.dfanning.com
;
; CATEGORY:

Page 3 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;
; Widgets, Graphics.
;
; CALLING SEQUENCE:
;
; FSC_WINDOW, command, P1, P2, P3
;
; REQUIRED INPUTS:
;
; COMMAND: The graphics procedure command to be executed. This
parameter
; must be a STRING and the the command must be a procedure.
Examples
; are 'SURFACE', 'CONTOUR', 'PLOT', etc.
;
; OPTIONAL INPUTS:
;
; P1: The first positional parameter appropriate for the graphics
; command.
;
; P2: The second positional parameter appropriate for the
graphics
; command.
;
; P3: The third positional parameter appropriate for the graphics
; command.
;
; INPUT KEYWORD PARAMETERS:
;
; WBACKGROUND: The background color index for the window. Setting
this color
; along with the WERASEIT keyword causes the window to be
erased with
; this color. Set to !P.Background by default.
;
; WERASEIT: Setting this keyword "erases" the contents of the
current
; graphics window before re-executing the graphics command. For
example,
; this keyword might need to be set if the graphics "command" is
TVSCL.
; The default is to NOT erase the display before reissuing the
graphics
; command.
;
; _EXTRA: This keyword forms an anonymous structure of any
unrecognized
; keywords passed to the program. The keywords must be

Page 4 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

appropriate
; for the graphics command being executed.
;
; GROUP_LEADER: The group leader for this program. When the group
leader
; is destroyed, this program will be destroyed.
;
; METHOD: Set this keyword to indicate that the method of an
object
; should be called, instead of a graphics procedure command. If
this
; keyword is set, the COMMAND parameter should be the name of an
object
; procedure method, and the P1 parameter MUST be an object
reference.
;
; TVORDER: This keyword corresponds the the !Order system
variable. It
; is not used in this program, but is carried along for the call
to
; TVREAD when windows are saved as ouput files. It will affect
the
; transfer of window contents into the output data file. It
should be
; used if the output file contents appear upside down.
;
; WTITLE: This is the window title. It is the string "COMMAND
Window (1)"
; by default, where COMMAND is the input parameter. And the
number
; (1 in this case) is the window index number of the draw widget.
;
; WXPOS: This is the initial X offset of the window. Default is
to
; position the window in the approximate middle of the display.
;
; WYPOS: This is the initial Y offset of the window. Default is
to
; position the window in the approximate middle of the display.
;
; WPOSTSCRIPT: Set this keyword to 1 to include a PostScript File
button under
; the Save As button. This keyword is set automatically on 24-bit
display
; devices. To turn the button OFF on 24-bit devices, set the
keyword value to 0.
; There is no guaranteed way to create perfect PostScript output
when the program

Page 5 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; is run on 8-bit displays. This will depend entirely on how the
"graphics command"
; is written. Hence the button is turned off automatically on
8-bit devices.
;
; WPRINT: Set this keyword to 1 to include a Print button under
the File button.
; This keyword is set automatically on 24-bit display devices. To
turn the
; button OFF on 24-bit devices, set the keyword value to 0. There
is no
; guaranteed way to print output correctly when the program is
run on
; 8-bit displays. This will depend entirely on how the "graphics
command"
; is written. Hence the button is turned off automatically on
8-bit devices.
;
; WXSIZE: This is the initial X size of the window. Default is
400
; pixels.
;
; WYSIZE: This is the initial Y size of the window. Default is
400
; pixels.
;
; WCOLORS: Using this keyword adds a "Colors..." button to the
; "File" menu. Set this keyword to the number of colors available
; in the window and the starting index of the first color. For
example,
; to allow the window access to 100 colors, starting at color
index 50
; (i.e., color indices 50 to 149), use WColors=[100, 50]. If you
use the
; keyword syntax "/WColors", all the colors available will be
used, not just
; one color. If the keyword is set to a scalar value greater than
1, the
; starting color index is set to 0. The default value for this
keyword
; is [(!D.Table_Size, 0].
;
; KBRD_FOCUS_EVENTS: This keyword is passed through to
; WIDGET_CONTROL. If set, events are issued whenever the keyboard
focus
; of the widget changes. ATTENTION: Until now, the default value
of this
; keyword was 1!

Page 6 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;
; BUTTON_EVENTS: If set, the draw widget will create button
events.
;
; MOTION_EVENTS: If set, the draw widget will create motion
events.
;
; USER_EVENT_PRO: If either BUTTON_EVENTS or MOTION_EVENTS are
set, the
; appropriate events must be passed to an external routine. The
only
; parameter of this routine is the event itself.
;
; COMMON BLOCKS:
;
; None.
;
; RESTRICTIONS:
;
; This program requires additional programs from the Fanning
; Software Consulting library:
;
; CENTERTLB.PRO
; ERROR_MESSAGE.PRO
; FSC_PSCONFIG__DEFINE.PRO
; FSC_DROPLIST.PRO
; FSC_FIELD.PRO
; FSC_FILESELECT.PRO
; FSC_INPUTFIELD.PRO
; FSC_PLOTWINDOW.PRO
; PSCONFIG.PRO
; PSWINDOW.PRO
; TVREAD.PRO
; XCOLORS.PRO
;
; If the "command" program requires keywords that are also
keywords
; to FSC_WINDOW, then you must use the keyword twice on the
command line.
;
; EXAMPLE:
;
; If the program is called with no parameters whatsoever, it will
load
; example data.
;
; IDL> FSC_WINDOW
;

Page 7 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; To use the program with an IDL PLOT command, for example:
;
; IDL> FSC_WINDOW, 'PLOT', Findgen(11), Charsize=1.5,
Title='Example Plot'
;
; To build your own graphics display command, you can do
something like this.
; Here is a command program that takes an image, a column number,
and a row number,
; and plots a column and row profile next to one another:
;
; PRO COL_ROW_PLOT, image, column, row, _Extra=extra
; ; Check parameters.
; IF N_Elements(image) EQ 0 THEN image = DIST(200)
; IF N_ELements(column) EQ 0 THEN column = 100
; IF N_Elements(row) EQ 0 THEN row = 100
; ; Set up plots.;
; !P.Multi = [0, 2, 1]
; Plot, image[column, *], Title='Row Profile',
YRange=[Min(image), Max(image)], $
; XStyle=1, XTitle='At Column No: ' + StrTrim(column,2),
_Extra=extra
; Plot, image[*, row], Title='Column Profile',
YRange=[Min(image), Max(image)], $
; XStyle=1, XTitle='At Row No: ' + StrTrim(row,2),
_Extra=extra
; !P.Multi = 0
; END
;
; This command program is used with FSC_WINDOW, like this:
;
; IDL> Demo_GetData, image, Filename='ctscan.dat'
; IDL> FSC_WINDOW, 'COL_ROW_PLOT', image, 30, 185, YTitle='Image
Value'
;
; TIPS FOR WRITING GRAPHICS DISPLAY PROGRAMS TO USE WITH FSC_WINDOW:
;
; It is *exceedingly* difficult to write a graphics display
routine that uses
; color and get it to display properly on your display, in a
PostScript file, and
; when printed. This is because: (1) your display is a 24-bit
device and the PostScript
; and PRINTER devices are both 8-bit devices, and (2) the printer
is different from your
; display and PostScript device in not being able to load colors
on the fly. (A single
; color table can only be loaded when you SET_PLOT to a PRINTER,

Page 8 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

and then the colors
; cannot be changed.)
;
; Since FSC_Window knows *nothing* about your graphics display
routine, the chances of
; it doing all three of these things correctly are just about
zero, unless you follow
; the recommendations below. (In which case, your changes improve
to about 50/50.)
;
; RECOMMENDATIONS
;
; 1. Use FSC_COLOR to specify your colors. If you don't do this,
please don't call
; me for help. This is the FIRST thing I will recommend you
try. :-) FSC_COLOR *exists* to
; solve these particular problems! And _get the latest
version_! Things may have changed
; since you last downloaded it.
;
; 2. Consider using a white background color for your graphics
display. This is what
; you are going to get with PostScript whether you like it or
not. It will make things
; a LOT simpler for you to do it this way. Otherwise, it is up
to you to write your
; graphics display program in such a way that if you are in
the PostScript device, you
; will fill the page with the background color *before* you
draw your graphics. Something
; like this:
;
; IF !D.Name EQ 'PS' THEN Polyfill, [0,0,1,1, 0],
[0,1,1,0,0], /Normal, $
; Color=FSC_Color(backgroundColor)
; Plot, data, Color=FSC_Color(plotColor),
Background=FSC_Color(backgroundColor)
;
; 3. If you plan to print the contents of your FSC_WINDOW, you
must load your
; colors *immediately* before you call the FSC_WINDOW program.
This will ensure
; that the program will load *these* colors before it calls
the PRINTER device.
; Unless you have specific requirements, I would load the
colors like this:
;
; TVLCT, FSC_Color(/AllColors, /Triple, NColors=ncolors),

Page 9 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

!D.table_Size - ncolors - 2
; FSC_Window, 'yourprogram', ...
;
; 4. In your graphics display program, use FSC_Color to specify
all colors and DO *NOT*
; use a color index parameter in the call. (The colorIndex
parameter is the second
; positional parameter to FSC_COLOR.) You code might look
something like this:
;
; Plot, mydata, Color=FSC_Color('Dodger Blue'),
Background=FSC_Color('White')
;
; Good luck! If you have any problems (and you have followed
recommendation 1 already),
; then please contact me for help.
;
; MODIFICATION HISTORY:
;
; Written by: David Fanning, Sept 2000. Based on previous XWINDOW
program.
; Whoops! Left out the line to resize draw widgets on UNIX
machines. Fixed. 12 Oct 2000, DWF.
; Removed support for GIF files for IDL 5.4. 18 Jan 2001. DWF.
; Beefed up documentation. 27 March 2001. DWF.
; Added TVORDER keyword. 25 March 2002. DWF.
; Added METHOD keyword so that an object method could used as the
graphics
; display routine name. 6 July 2003 KaRo
; Added tips for writing graphics display programs. 26 Aug 2004.
DWF.
;-
;
 ;### ################
;
; LICENSE
;
; This software is OSI Certified Open Source Software.
; OSI Certified is a certification mark of the Open Source Initiative.
;
; Copyright © 2000-2004 Fanning Software Consulting.
;
; This software is provided "as-is", without any express or
; implied warranty. In no event will the authors be held liable
; for any damages arising from the use of this software.
;
; Permission is granted to anyone to use this software for any
; purpose, including commercial applications, and to alter it and

Page 10 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; redistribute it freely, subject to the following restrictions:
;
; 1. The origin of this software must not be misrepresented; you must
; not claim you wrote the original software. If you use this
software
; in a product, an acknowledgment in the product documentation
; would be appreciated, but is not required.
;
; 2. Altered source versions must be plainly marked as such, and must
; not be misrepresented as being the original software.
;
; 3. This notice may not be removed or altered from any source
distribution.
;
; For more information on Open Source Software, visit the Open Source
; web site: http://www.opensource.org.
;
 ;### ################

PRO FSC_Window_Execute, info

; This module executes the command.

 ; Error handling for all trapped errors.

Catch, theError
IF theError NE 0 THEN BEGIN
 Catch, /Cancel
 ok = Error_Message(Traceback=1, /Error)
 RETURN
ENDIF

 ; Current window, if supported.

IF (!D.Flags AND 256) NE 0 THEN WSet, info.wid

 ; Color protection on? Load color vectors if appropriate.

TVLCT, info.r, info.g, info.b

 ; Need an erase before drawing graphics?

IF info.weraseit THEN Erase, Color=info.wbackground

 ; Execute the command, based on the number of parameters
 ; and whether the keyword pointer points to a valid variable.

Page 11 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

if info.cmdStruct.type eq 0 then $
IF N_Elements(*info.cmdStruct.keywords) EQ 0 THEN BEGIN
 CASE info.cmdStruct.nparams OF
 0: Call_Procedure, info.cmdStruct.command
 1: Call_Procedure, info.cmdStruct.command, *info.cmdStruct.p1
 2: Call_Procedure, info.cmdStruct.command, *info.cmdStruct.p1,
*info.cmdStruct.p2
 3: Call_Procedure, info.cmdStruct.command, *info.cmdStruct.p1,
*info.cmdStruct.p2, $
 *info.cmdStruct.p3
 ENDCASE
ENDIF ELSE BEGIN
 CASE info.cmdStruct.nparams OF
 0: Call_Procedure, info.cmdStruct.command,
_Extra=*info.cmdStruct.keywords
 1: Call_Procedure, info.cmdStruct.command, *info.cmdStruct.p1,
_Extra=*info.cmdStruct.keywords
 2: Call_Procedure, info.cmdStruct.command, *info.cmdStruct.p1,
*info.cmdStruct.p2, $
 _Extra=*info.cmdStruct.keywords
 3: Call_Procedure, info.cmdStruct.command, *info.cmdStruct.p1,
*info.cmdStruct.p2, $
 *info.cmdStruct.p3, _Extra=*info.cmdStruct.keywords
 ENDCASE
ENDELSE $
ELSE $
IF N_Elements(*info.cmdStruct.keywords) EQ 0 THEN BEGIN
 CASE info.cmdStruct.nparams OF
 0: Call_Method, info.cmdStruct.command
 1: Call_Method, info.cmdStruct.command, *info.cmdStruct.p1
 2: Call_Method, info.cmdStruct.command, *info.cmdStruct.p1,
*info.cmdStruct.p2
 3: Call_Method, info.cmdStruct.command, *info.cmdStruct.p1,
*info.cmdStruct.p2, $
 *info.cmdStruct.p3
 ENDCASE
ENDIF ELSE BEGIN
 CASE info.cmdStruct.nparams OF
 0: Call_Method, info.cmdStruct.command,
_Extra=*info.cmdStruct.keywords
 1: Call_Method, info.cmdStruct.command, *info.cmdStruct.p1,
_Extra=*info.cmdStruct.keywords
 2: Call_Method, info.cmdStruct.command, *info.cmdStruct.p1,
*info.cmdStruct.p2, $
 _Extra=*info.cmdStruct.keywords
 3: Call_Method, info.cmdStruct.command, *info.cmdStruct.p1,
*info.cmdStruct.p2, $
 *info.cmdStruct.p3, _Extra=*info.cmdStruct.keywords

Page 12 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ENDCASE
ENDELSE

END
 ;--- -----------------------------

PRO FSC_Window_Example, _Extra=extra

; An example graphics display routine. Called if no parameters
; are passed to FSC_Window.

 ; Windows supported?

IF (!D.Flags AND 256) NE 0 THEN $
 Device, Get_Decomposed=decomposedState, Decomposed=0

 ; Fake data and Shade_Surf display.

data = Dist(40)
Surface, data, Shades=BytScl(data)

 ; Color decompositon back to entry value.

IF (!D.Flags AND 256) NE 0 THEN $
 Device, Decomposed=decomposedState
END
 ;--- -----------------------------

PRO FSC_Window_PostScript, event

; This event handler executes PostScript output.

 ; Error handling.

Catch, theError
IF theError NE 0 THEN BEGIN
 Catch, /Cancel
 IF !Error_State.Name EQ 'IDL_M_UPRO_UNDEF' THEN BEGIN
 ok = Dialog_Message(['Cannot find PSConfig. Please download
now',$
 'or add PSConfig directory to path.'])
 Widget_Control, event.top, Set_UValue=info, /No_Copy
 RETURN

Page 13 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ENDIF ELSE BEGIN
 ok = Error_Message(Traceback=1, /Error)
 Widget_Control, event.top, Set_UValue=info, /No_Copy
 RETURN
 ENDELSE
ENDIF

 ; Get the info structure.

Widget_Control, event.top, Get_UValue=info, /No_Copy

 ; Allow user to configure the PostScript device.

info.psconfiguration->GUI,Cancel=cancelled, Group_Leader=event.top
keywords = info.psconfiguration->GetKeywords()
IF cancelled THEN BEGIN
 Widget_Control, event.top, Set_UValue=info, /No_Copy
 RETURN
ENDIF

 ; Display the graphics by executing the command.

thisDevice = !D.Name
Set_Plot, 'PS'
Device, _Extra=keywords
FSC_Window_Execute, info
Device, /Close_File
Set_Plot, thisDevice

 ; Return the info structure.

Widget_Control, event.top, Set_UValue=info, /No_Copy

END
 ;--- -----------------------------

PRO FSC_Window_Print, event

; This event handler executes the command in the Printer device.

 ; Set up the printer.

ok = Dialog_PrinterSetup()
IF NOT ok THEN RETURN

Page 14 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ; Get info structure and printer orientation.

Widget_Control, event.top, Get_UValue=info, /No_Copy
Widget_Control, event.id, Get_UValue=orientation

 ; Load the program's color vectors.

TVLCT, info.r, info.g, info.b

 ; Save the current graphics device.

thisDevice = !D.Name

 ; Set up the printer. You may have to adjust the fudge factors
 ; to account for the printable area offset.

CASE orientation OF
 'PORTRAIT': BEGIN
 keywords = PSWindow(/Printer, Fudge=0.25)
 Set_Plot, 'PRINTER', /Copy
 Device, Portrait=1
 ENDCASE
 'LANDSCAPE': BEGIN
 keywords = PSWindow(/Printer, /Landscape, Fudge=0.25)
 Set_Plot, 'PRINTER', /Copy
 Device, Landscape=1
 ENDCASE
ENDCASE

 ; Display the grapics by executing the command.

Device, _Extra=keywords
FSC_Window_Execute, info
Device, /Close_Document
Set_Plot, thisDevice

 ; Restore the info structure.

Widget_Control, event.top, Set_UValue=info, /No_Copy

END
 ;--- -----------------------------

PRO FSC_Window_SaveAs, event

Page 15 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; Saves the current display window as output files.

 ; Get the info structure and the appropriate file extension.

Widget_Control, event.top, Get_UValue=info, /No_Copy
Widget_Control, event.id, Get_UValue=file_extension

 ; Base name for file output.

basename = 'fsc_window'

 ; Take a snapshot of the display window and write file.

WSet, info.wid
CASE file_extension OF
 'BMP' : image = TVREAD(Filename = basename, /BMP, Order=info.order)
 'GIF' : image = TVREAD(Filename = basename, /GIF, Order=info.order)
 'PICT' : image = TVREAD(Filename = basename, /PICT,
Order=info.order)
 'JPG' : image = TVREAD(Filename = basename, /JPEG,
Order=info.order)
 'TIF' : image = TVREAD(Filename = basename, /TIFF,
Order=info.order)
 'PNG' : image = TVREAD(Filename = basename, /PNG, Order=info.order)
ENDCASE

 ; Restore the info structure.

Widget_Control, event.top, Set_UValue=info, /No_Copy

END
 ;--- -----------------------------

PRO FSC_Window_Command__Define

; The definition of the command structure.

 struct = { FSC_Window_Command, $
 command: "", $; The command to execute.
 p1: Ptr_New(), $; The first parameter.
 p2: Ptr_New(), $; The second parameter.
 p3: Ptr_New(), $; The third parameter.
 nparams: 0, $; The number of parameters.
 keywords: Ptr_New(), $; The command keywords.
 type: 0, $; =0 call_procedure =1 call_method

Page 16 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 user_event_pro: "" $; User defined event handling
routine for
 ; button or motion events
 }
END
 ;--- -----------------------------

PRO FSC_Window_Quit, event

; This event handler destroys the program.

 Widget_Control, event.top, /Destroy
END
 ;--- -----------------------------

PRO FSC_Window_Cleanup, tlb

; The cleanup routine for the program.

Widget_Control, tlb, Get_UValue=info, /No_Copy
IF N_Elements(info) EQ 0 THEN RETURN

 ; Free up the pointers and objects used in the program.

Ptr_Free, info.cmdStruct.p1
Ptr_Free, info.cmdStruct.p2
Ptr_Free, info.cmdStruct.p3
Ptr_Free, info.cmdStruct.keywords
Obj_Destroy, info.psconfiguration
END
 ;--- -----------------------------

PRO FSC_Window_TLB_Events, event

; The event handler for top-level base events.

 Widget_Control, event.top, Get_UValue=info, /No_Copy

 ; What kind of event is this:

Page 17 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 thisEvent = Tag_Names(event, /Structure_Name)

 CASE thisEvent OF

 'WIDGET_BASE': BEGIN

 ; Resize the draw widget.

 IF StrUpCase(!Version.OS_Family) NE 'UNIX' THEN BEGIN

 Widget_Control, info.drawid, XSize=event.x, YSize=event.y
 info.xsize = event.x
 info.ysize = event.y

 ENDIF ELSE BEGIN

 ; This code added to work-around UNIX
resize bug when
 ; TLB has a menu bar in IDL 5.2.

 Widget_Control, event.top, TLB_GET_Size=newsize
 xdiff = newsize[0] - info.tlbxsize
 ydiff = newsize[1] - info.tlbysize
 info.tlbxsize = event.x
 info.tlbysize = event.y
 info.xsize = info.xsize + xdiff
 info.ysize = info.ysize + ydiff
 Widget_Control, info.drawid, XSize=info.xsize,
YSize=info.ysize

 ENDELSE

 ; Execute the command.

 FSC_Window_Execute, info

 ENDCASE

 'WIDGET_KBRD_FOCUS': BEGIN

 ; Keyboard focus events if color
protection is turned on.

 IF event.enter EQ 0 THEN BEGIN
 Widget_Control, event.top, Set_UValue=info, /No_Copy
 RETURN

Page 18 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ENDIF

 ; Load colors and execute.

 TVLCT, info.r, info.g, info.b
 FSC_Window_Execute, info

 ENDCASE

 ELSE: call_procedure, info.cmdStruct.user_event_pro, event

 ENDCASE
 Widget_Control, event.top, Set_UValue=info, /No_Copy
END
 ;--- -----------------------------

PRO FSC_Window_Colors, event

; This event handler handles color events.

Widget_Control, event.top, Get_UValue=info, /No_Copy

 ; What kind of event is this?

thisEvent = Tag_Names(event, /Structure_Name)

CASE thisEvent OF

 'WIDGET_BUTTON': BEGIN

 ; Call XColors to change colors.

 TVLCT, info.r, info.g, info.b
 XColors, Group_Leader=event.top, NColors=info.wcolors[0],
Bottom=info.wcolors[1], $
 Title=info.wtitle + ' Colors', NotifyID=[event.id, event.top]

 ENDCASE

 'XCOLORS_LOAD': BEGIN

 ; New color tables are loaded. Save them.
 ; Redisplay graphics on 24-bit displays.

 Device, Get_Visual_Depth=theDepth

Page 19 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 info.r = event.r
 info.g = event.g
 info.b = event.b
 IF theDepth GT 8 THEN FSC_Window_Execute, info
 ENDCASE

ENDCASE
Widget_Control, event.top, Set_UValue=info, /No_Copy
END
 ;--- -----------------------------

PRO FSC_Window, $
 command, $; The graphics "command" to
execute.
 p1, p2, p3, $; The three allowed positional
parameters.
 _Extra = extra, $; Any extra keywords. Usually the
"command" keywords.
 Group_Leader = group_leader, $; The group leader of the
FSC_Window program.
 Method=method, $; If set, will use CALL_METHOD
instead of CALL_PROCEDURE to execute command.
 TVOrder=tvorder, $; The order in which window
contents should be transferred from the display. By default, !Order.
 WEraseIt = Weraseit, $; Set this keyword to erase the
display before executing the command.
 WXSize = wxsize, $; The X size of the FSC_Window
graphics window in pixels. By default: 400.
 WYSize = wysize, $; The Y size of the FSC_Window
graphics window in pixels. By default: 400.
 WColors = wcolors, $; This keyword controls the ability
to set colors.
 WTitle = wtitle, $; The window title.
 WXPos = wxpos, $; The X offset of the window on the
display. The window is centered if not set.
 WYPos = wypos, $; The Y offset of the window on the
display. The window is centered if not set.
 WBackground = wbackground, $; The background color. Set to
!P.Background by default.
 WPostScript=needPS, $; Set if you want PostScript
capability. Set to 1 automatically for 24-bit displays.
 WPrint = needPrint, $; Set if you want Printer
capability. Set to 1 automatically for 24-bit displays.
 Button_Events = Button_Events, $; If set, the draw widget will
create button events

Page 20 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 Motion_Evenst = Motion_Events, $; If set, the draw widget will
create motion events
 user_event_pro = user_event_pro, $; The name of an event
handling routine to be called in case of button
 ; or motion events
 KBRD_Focus_Events = KBRD_Focus_Events ; Set to 1 to cause widget
keyboard focus events

 ; Error handling.

On_Error, 2
Catch, theError
IF theError NE 0 THEN BEGIN
 Catch, /Cancel
 ok = Error_Message(Traceback=1, /Error)
 RETURN
ENDIF

 ; Check for availability of GIF files.

thisVersion = Float(!Version.Release)
IF thisVersion LT 5.4 THEN haveGif = 1 ELSE haveGIF = 0

 ; Check keywords and define values if required.

IF N_Elements(method) EQ 0 THEN method = 0
IF N_Elements(tvorder) EQ 0 THEN tvorder = !Order
IF N_Elements(wxsize) EQ 0 THEN wxsize = 400
IF N_Elements(wysize) EQ 0 THEN wysize = 400
IF N_Elements(wxpos) EQ 0 THEN wxpos = -1
IF N_Elements(wypos) EQ 0 THEN wypos = -1
IF N_Elements(wtitle) EQ 0 THEN wtitle = "NOTITLE"
IF N_Elements(wbackground) EQ 0 THEN wbackground=!P.Background
Device, Get_Visual_Depth=theDepth
IF theDepth GT 8 AND N_Elements(needPS) EQ 0 THEN needPS = 1
IF theDepth GT 8 AND N_Elements(needPrint) EQ 0 THEN needPrint = 1
needPS = Keyword_Set(needPS)
needPrint = Keyword_Set(needPrint)

IF N_Elements(command) EQ 0 THEN BEGIN
 command = 'FSC_Window_Example'
 wtitle = 'Example Data'
 LoadCT, 4, /Silent
 wcolors = !D.Table_Size
 needPrint = 1
 needPS = 1

Page 21 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

ENDIF

 ; Check for color handling.

IF Keyword_Set(wcolors) THEN BEGIN
 needColors = 1
 IF N_Elements(wcolors) EQ 1 THEN BEGIN
 IF wcolors[0] EQ 1 THEN wcolors = [!D.Table_Size, 0] ELSE wcolors
= [wcolors, 0]
 ENDIF
 wcolors[0] = (wcolors[1] + wcolors[0]) < (!D.Table_Size -
wcolors[1])
 IF wcolors[0] EQ 0 THEN $
 Message, 'Problem with COLORS keyword. Check calling sequence.',
/NoName
ENDIF ELSE BEGIN
 needColors = 0
 wcolors = 1
ENDELSE
weraseit = Keyword_Set(weraseit)

 ; Parse command and build a command structure.

IF Size(command, /TName) NE 'STRING' THEN $
 Message, 'First argument must be a string. Returning...', /NoName
cmdStruct = {FSC_WINDOW_COMMAND}
cmdStruct.command = command
cmdStruct.type = method
nparams = 0
IF N_Elements(p1) NE 0 THEN BEGIN
 nparams = nparams + 1
 cmdStruct.p1 = Ptr_New(p1)
ENDIF
IF N_Elements(p2) NE 0 THEN BEGIN
 nparams = nparams + 1
 cmdStruct.p2 = Ptr_New(p2)
ENDIF
IF N_Elements(p3) NE 0 THEN BEGIN
 nparams = nparams + 1
 cmdStruct.p3 = Ptr_New(p3)
ENDIF
cmdStruct.nparams = nparams
IF N_Elements(extra) NE 0 THEN cmdStruct.keywords = Ptr_New(extra) $
 ELSE cmdStruct.keywords = Ptr_New(/Allocate_Heap)

IF N_Elements(Button_events) NE 0 or N_Elements(Motion_Events) NE 0
THEN BEGIN
 IF N_Elements(user_event_pro) NE 0 THEN $

Page 22 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 cmdStruct.user_event_pro = user_event_pro $
 ELSE $
 Message, 'You have to set "user_event_pro" when Button or Motion
events are issued. Returning...', /NoName
ENDIF

 ; Build the widgets.

tlb = Widget_Base(/TLB_Size_Events, Column=1, MBar=mbarID)
fileID = Widget_Button(mbarID, Value='File')

 ; Print button, if needed.

IF needPrint THEN BEGIN
 printID = Widget_Button(fileID, Value='Print',
Event_Pro='FSC_Window_Print', /Menu)
 dummy = Widget_Button(printID, Value='Landscape Orientation',
UVALUE='LANDSCAPE')
 dummy = Widget_Button(printID, Value='Portrait Orientation',
UVALUE='PORTRAIT')
ENDIF

 ; Save As menu.

saveID = Widget_Button(fileID, Value='Save As',
Event_Pro='FSC_Window_SaveAs', /Menu)
dummy = Widget_Button(saveID, Value='BMP File', UValue='BMP')
IF havegif THEN dummy = Widget_Button(saveID, Value='GIF File',
UValue='GIF')
dummy = Widget_Button(saveID, Value='PICT File', UValue='PICT')
dummy = Widget_Button(saveID, Value='PNG File', UValue='PNG')
dummy = Widget_Button(saveID, Value='JPEG File', UValue='JPG')
dummy = Widget_Button(saveID, Value='TIFF File', UValue='TIF')
IF needPS THEN dummy = Widget_Button(saveID, Value='PostScript File', $
 Event_Pro='FSC_Window_PostScript')

 ; Colors button, if needed.

IF needcolors THEN dummy = Widget_Button(fileID, Value='Colors...', $
 /Separator, Event_Pro='FSC_Window_Colors')

 ; Quit button.

quitID = Widget_Button(fileID, Value='Quit',
Event_Pro='FSC_Window_Quit', /Separator)

 ; Draw widget.

Page 23 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

drawID = Widget_Draw(tlb, XSize=wxsize, YSize=wysize, $
 Button_Events=Button_Events, $
 Motion_Events=Motion_Events $
)

 ; Position the program on the display.

IF wxpos LT 0 OR wypos LT 0 THEN CenterTLB, tlb ELSE $
 Widget_Control, tlb, XOffset=wxpos, YOFFset=wypos
Widget_Control, tlb, /Realize
Widget_Control, drawID, Get_Value=wid

 ; Set unique title for the program.

IF wtitle EQ 'NOTITLE' THEN $
 wtitle = StrUpCase(command) + ' Window (' + StrTrim(wid,2) + ')'
ELSE $
 wtitle = wtitle + ' (' + StrTrim(wid,2) + ')'
Widget_Control, tlb, TLB_Set_Title=wtitle

 ; Set current graphics window.

WSet, wid

 ; Get some information for a window resize bug.

Widget_Control, tlb, TLB_Get_Size=tlbsizes

 ; Store the program's colors.

TVLCT, r, g, b, /Get

 ; Build the info structure.

info = { cmdStruct: cmdStruct, $
 xsize:wxsize, $; X size of window.
 ysize:wysize, $; Y size of window.
 tlbxsize:tlbsizes[0], $; X size of TLB.
 tlbysize:tlbsizes[1], $; Y size of TLB.
 order:tvorder, $; The order of window
transfer.
 r: r, $; The red color vector.
 g: g, $; The green color vector.
 b: b, $; The blue color vector.
 psconfiguration:Obj_New(), $; The window's PostScript
configuration.
 wid: wid, $; The window index number.
 drawid: drawid, $; The draw widget

Page 24 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

identifier.
 wcolors:wcolors, $; The window's color
information.
 wtitle:wtitle, $; The window's title.
 wbackground: wbackground, $; The window's background
color.
 weraseit: weraseit $; The window's erase flag.
 }

 ; If PostScript output is required, initialize the PSConfig object.

IF needPS THEN info.psconfiguration = Obj_New("FSC_PSConfig")

 ; If we are going to have problems executing the command, catch it
here.

Catch, theError
IF theError NE 0 THEN BEGIN
 Catch, /Cancel
 Widget_Control, tlb, /Destroy
 ok = Error_Message('Problem executing command. Check spelling and
syntax', /Error, /Traceback)
 RETURN
ENDIF

 ; Execute the command.

IF info.cmdStruct.type EQ 0 THEN $
 IF N_Elements(*info.cmdStruct.keywords) EQ 0 THEN BEGIN
 CASE info.cmdStruct.nparams OF
 0: Call_Procedure, info.cmdStruct.command
 1: Call_Procedure, info.cmdStruct.command, *info.cmdStruct.p1
 2: Call_Procedure, info.cmdStruct.command, *info.cmdStruct.p1,
*info.cmdStruct.p2
 3: Call_Procedure, info.cmdStruct.command, *info.cmdStruct.p1,
*info.cmdStruct.p2, $
 *info.cmdStruct.p3
 ENDCASE
 ENDIF ELSE BEGIN
 CASE info.cmdStruct.nparams OF
 0: Call_Procedure, info.cmdStruct.command,
_Extra=*info.cmdStruct.keywords
 1: Call_Procedure, info.cmdStruct.command, *info.cmdStruct.p1,
_Extra=*info.cmdStruct.keywords
 2: Call_Procedure, info.cmdStruct.command, *info.cmdStruct.p1,
*info.cmdStruct.p2, $
 _Extra=*info.cmdStruct.keywords
 3: Call_Procedure, info.cmdStruct.command, *info.cmdStruct.p1,

Page 25 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

*info.cmdStruct.p2, $
 *info.cmdStruct.p3, _Extra=*info.cmdStruct.keywords
 ENDCASE
 ENDELSE $
ELSE $
 IF N_Elements(*info.cmdStruct.keywords) EQ 0 THEN BEGIN
 CASE info.cmdStruct.nparams OF
 0: Call_Method, info.cmdStruct.command
 1: Call_Method, info.cmdStruct.command, *info.cmdStruct.p1
 2: Call_Method, info.cmdStruct.command, *info.cmdStruct.p1,
*info.cmdStruct.p2
 3: Call_Method, info.cmdStruct.command, *info.cmdStruct.p1,
*info.cmdStruct.p2, $
 *info.cmdStruct.p3
 ENDCASE
 ENDIF ELSE BEGIN
 CASE info.cmdStruct.nparams OF
 0: Call_Method, info.cmdStruct.command,
_Extra=*info.cmdStruct.keywords
 1: Call_Method, info.cmdStruct.command, *info.cmdStruct.p1,
_Extra=*info.cmdStruct.keywords
 2: Call_Method, info.cmdStruct.command, *info.cmdStruct.p1,
*info.cmdStruct.p2, $
 _Extra=*info.cmdStruct.keywords
 3: Call_Method, info.cmdStruct.command, *info.cmdStruct.p1,
*info.cmdStruct.p2, $
 *info.cmdStruct.p3, _Extra=*info.cmdStruct.keywords
 ENDCASE
 ENDELSE

 ; Save the info structure and turn keyboard focus events on.

 Widget_Control, tlb, Set_UValue=info, /No_Copy,
KBRD_Focus_Events=KBRD_Focus_Events

 ; Start er up!

XManager, 'fsc_window', tlb, /No_Block,
Event_Handler='FSC_Window_TLB_Events', $
 Group_Leader=group_leader, Cleanup='FSC_Window_Cleanup'

END
 ;--- -----------------------------

Subject: Re: Save 2D conversion matrix
Posted by David Fanning on Wed, 09 Nov 2005 13:43:04 GMT

Page 26 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

View Forum Message <> Reply to Message

Peter Albert writes:

> However, now I am using a plot command which can take several seconds
> to be completed. The current version of FSC_WINDOW sets the
> KBRD_Focus_Events keyword to WIDGET_CONTROL to 1, with the conseqence
> that dragging the window accross the screen can easily take several
> minutes...

Several minutes!? You're not running this on a Mac, are you?
If this is a PC, I would guess you have "Show Window Contents
While Dragging" turned on in your OS. This, surely, is the
most perverse abomination Bill Gates ever dreamed up.

Right click on your desktop. Choose properties. Go to the
Appearance tab. Find the Effects button and select that.
Now turn off that infernal "Show Contents" selection.

There. That should not save you *hours* (not to mention your
eyesight, with all that damn flashing that used to go on).

Cheers,

David
--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: Save 2D conversion matrix
Posted by David Fanning on Wed, 09 Nov 2005 13:48:01 GMT
View Forum Message <> Reply to Message

Peter Albert writes:

> Actually, a long while ago I dropped working with draw
> widgets because I wanted to be able to resize the draw window, which
> appeared to be not actually trivial with draw widgets. Then there came
> FSC_WINDOW and resizing the window as no longer a problem :-)

We seem to be working in parallel universes, Peter,
where the laws of physics are reversed. I guess I
can't think of too many things *more* trivial than
resizing a draw widget:

 Widget_Control, drawWidgetID, Draw_XSize=event.x, $

Page 27 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=21858&goto=46296#msg_46296
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=46296
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=21858&goto=46295#msg_46295
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=46295
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

	Draw_YSize=event.y

It really doesn't get any easier than that! :-)

Cheers,

David

--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: Save 2D conversion matrix
Posted by David Fanning on Wed, 09 Nov 2005 14:01:35 GMT
View Forum Message <> Reply to Message

Peter Albert writes:

> Well, this can be changed, and now I also wanted button and
> motion events. Imho the appropriate event handling routine should not
> be within the FSC_WINDOW source code, as any user might do something
> different, so I added a keyword USER_EVENT_PRO, which should be the
> name of a routine which just takes one parameter, namely the event
> itself.
>
> So there are 4 new keywords: BUTTON_EVENTS and MOTION_EVENTS, which are
> passed through to WIDGET_DRAW, USER_EVENT_PRO which is used in the main
> event handler, and KBRD_Focus_Events, which is passed through to
> WIDGET_CONTROL.
>
> I added the modified code in case you think it's a useful extension.

Ah, I see where you are going with this now. Yes, interesting
ideas, although writing smart resizable graphics windows begins
to smack of doing RSI's job again. But I think you are pushing
FSC_Window *way* beyond what it was designed to do. I can see
the need for the kind of thing you are looking for, but if I
were going to write it, I would write it as an object, not
as the widget program FSC_Window is now.

I've got some bright students in the class I'm teaching
this week. Maybe I'll let them loose on it. Stay tuned. :-)

Cheers,

David

Page 28 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=21858&goto=46294#msg_46294
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=46294
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: Save 2D conversion matrix
Posted by peter.albert@gmx.de on Wed, 09 Nov 2005 14:40:33 GMT
View Forum Message <> Reply to Message

Hi David,

o.k., I admit that for resizing the draw widget a bit of reading the
documentation might have helped ...

But without stretching this discussion too far I would still like to
know why you chose to set the keyboard focus keyword to one. I repeated
the exercise with the slow plot command, and well, I have to admit that
dragging the window is actually not the problem (and several minutes
was exaggerating ...). It is more that IDL remembers how often you hit
the window with the mouse, and as I am a nervous person it often
happend that I repeatedly moved the mouse pointer right across the draw
widget while it was still processing the first event. Having finished,
it processed the second, than the third, ... and so on. And while
waiting I asked myself why it is necessary to update the plot command
just when a keyboard event occurs... But I guess there was a good
reason?

> I've got some bright students in the class I'm teaching
> this week. Maybe I'll let them loose on it. Stay tuned. :-)

I will!

Cheers,

 Peter

Subject: Re: Save 2D conversion matrix
Posted by David Fanning on Wed, 09 Nov 2005 16:07:26 GMT
View Forum Message <> Reply to Message

Peter Albert writes:

> But without stretching this discussion too far I would still like to

Page 29 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5483
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=21858&goto=46293#msg_46293
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=46293
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=21858&goto=46289#msg_46289
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=46289
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> know why you chose to set the keyboard focus keyword to one. I repeated
> the exercise with the slow plot command, and well, I have to admit that
> dragging the window is actually not the problem (and several minutes
> was exaggerating ...). It is more that IDL remembers how often you hit
> the window with the mouse, and as I am a nervous person it often
> happend that I repeatedly moved the mouse pointer right across the draw
> widget while it was still processing the first event. Having finished,
> it processed the second, than the third, ... and so on. And while
> waiting I asked myself why it is necessary to update the plot command
> just when a keyboard event occurs... But I guess there was a good
> reason?

I don't know. Keyboard focus!? Off-hand I would say it
was to fix some kind of bug. I hardly *ever* use keyboard
focus. Let me see...

Ah, in the old days none of us had 24-bit graphics cards.
Hard to believe, but we had to choose 256 colors out of
the palette of millions available to us now. But, none of
us liked the same colors. And if I liked *this*, you
certainly liked *that*. But worst of all, when you switched
the color table to *that* my programs went all to hell because
when you switched colors, you switched it for everyone.
(Astronomers, apparently, still prefer this system.)

It was annoying as all get out. But since FSC_WINDOW was
designed to work in that environment, and since it didn't
know *anything* about what it was displaying, it had to
have some way to get the colors right for the program it
was displaying. Otherwise, the poor user would have to
be reloading his colors (what a good idea!) before he
counted on them, and it seemed like a fool's errand to
try to teach people to do that!

So I came up with this idea that I would just keep track
of what colors you were using when the program started
and just reload them when focus shifted to the FSC_WINDOW
window. (I can't really think of a good reason why I also
chose to draw the graphics again, but it probably had more
to do with a Copy-Paste operation than it did with clear
thinking.)

In any case, this is the first time in the 15 years since
I wrote the program that anyone ever told me it was a problem.
I'd probably just remove it. At least that is where I would
start, and see what happens.

I doubt I would make changes to FSC_Window myself, however.

Page 30 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

It's too depressing to read code you wrote so long ago. It's
like looking at photos of yourself in the 1970's with the long
sideburns and mustache, standing there looking dopey with
your sickly paisley tie and mustard yellow shirt with the five
inch collars.

There are a LOT better ways to write that program today. Maybe
some day I'll get around to it. :-)

Cheers,

David
--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: Save 2D conversion matrix
Posted by peter.albert@gmx.de on Wed, 09 Nov 2005 19:51:13 GMT
View Forum Message <> Reply to Message

Hi David,

well, thanks a lot for the explanation and for your time :-)

I slightly remember the flickering screens when using Netscape back in
the last century, but that was years before I started working with IDL.

> I'd probably just remove it. At least that is where I would
> start, and see what happens.

That's just what I did. And everything works fine. But I try not to
modify other people's code prior to using as those changes most of the
time get lost with the next update. But then ...

> I doubt I would make changes to FSC_Window myself, however.
> It's too depressing to read code you wrote so long ago.

... it looks like this will not be the case with this routine :-)

Cheers,

 Peter

Page 31 of 31 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5483
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=21858&goto=46287#msg_46287
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=46287
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

