
Subject: mean() function
Posted by biocpu on Tue, 10 Jan 2006 22:34:09 GMT
View Forum Message <> Reply to Message

The following looks very odd. Have any clues?

 IDL> y = fltarr(1008879)+35
 IDL> id = where(y ne 35, cc)
 IDL> print, cc
 0
; so y is strictly 35.0 BUT
 IDL> print, mean(y)
 35.5249

 IDL> print, mean(y(0:400000))
 35.0000

Thanks,

Subject: Re: mean() function
Posted by Kenneth P. Bowman on Thu, 12 Jan 2006 17:07:00 GMT
View Forum Message <> Reply to Message

In article <ywkuzmm1l7bv.fsf@snowblower.colorado.edu>, savoie@nsidc.org
wrote:

> "Maarten" <maarten.sneep@knmi.nl> writes:
>
>> And the reason you need that page, is in part because IDL uses the
>> moment routine described in Numerical Recipes (take total first, divide
>> later), instead of a proper running average, like the GNU scientific
>> library does.
>>
>> However, since looping is slow in IDL, you don't want to implement that
>> in IDL, so the next best thing is to have that page.

The situation to avoid is adding values with different magnitudes. That
results in a loss of precision.

For example, summing a large number of values with similar magnitudes
will eventually result in adding small values to large values.

There are several tricks one can use to avoid this, particularly in the
case where all the values have similar magnitudes. The simplest is to
assume that the mean is close to the first value. Subtract the first
value from each value before accumulating, compute the mean, then add
the first value back into the total. Alternatively, compute a first

Page 1 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5091
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22129&goto=46938#msg_46938
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=46938
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3522
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22129&goto=46991#msg_46991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=46991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

approximation to the mean the naive way, then recompute the mean by
subtracting the approximate mean from each value before summing. This
requires two passes through the data, so the tradeoff is computational
time and precision.

Ken Bowman

Subject: Re: mean() function
Posted by Maarten[1] on Fri, 13 Jan 2006 08:57:40 GMT
View Forum Message <> Reply to Message

savoie@nsidc.org wrote:

> Would you mind explaining this a bit for me? What's a proper running
> average? And why is it better in general?

It assumes that values are resonably close the the average,
mathematically it is equivalent to taking the total, and then dividing,
but it avoids some precision problems.

In IDL code it requires an explicit loop over the data, which is slow.
An alternative is to do everything in double precision, but that is
just postponing the inevitable.

Code to calculate the mean in an array X:

mean = 0.
for ii = 0, n_elements(X)-1 do $
 mean += (X[ii] - mean) / (ii + 1)

Maarten

Subject: Re: mean() function
Posted by Foldy Lajos on Sun, 15 Jan 2006 13:53:17 GMT
View Forum Message <> Reply to Message

HI,

sometimes there is a trade-off between speed and correctness.
Here is another example:

IDL> print, !version
{ x86 linux unix linux 6.2 Jun 20 2005 32 64}

IDL> print, smooth([1, 1.0e20, 1, 1, 1, 1], 3)

Page 2 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5593
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22129&goto=46976#msg_46976
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=46976
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4102
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22129&goto=46956#msg_46956
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=46956
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 1.00000 3.33333e+19 3.33333e+19 0.00000 0.00000 1.00000

Instead of calculating the average for each 3-element window, IDL uses
the first average only, then slides the window by adding/subtracting
elements from the window edge. For width w it uses only 2 add/sub per
window instead of w additions, which is a huge speed-up for large widths,
but can give incorrect result for rare cases.

regards,
lajos

On Sun, 15 Jan 2006, Reimar Bauer wrote:

> mean is not useable if it results in this
>
> IDL> print,mean(make_array(500000,val=35,/float))
> 35.0413
> IDL> print,mean(make_array(400000,val=35,/float))
> 35.0000
>
> I prefer a slower routine if this is right.
>
> no one would accept 1.0 + 1.0 result = 1.5
>

Subject: Re: mean() function
Posted by Maarten[1] on Mon, 16 Jan 2006 08:01:05 GMT
View Forum Message <> Reply to Message

I think that this comes close. I ignores infinite numbers on request.
Is it fast: no. But implementing the thing is C should be near trivial
if you have dealt with that before (I haven't, at least not in IDL).

function alt_mean, D, nan=nan
	compile_opt defint32, strictarr, logical_predicate, strictarrsubs

	M = 0.0

	if keyword_set(nan) then begin
		idx = where(finite(D), cnt)
		if cnt gt 0 then begin
			for ii=0,n_elements(idx) do $
				M += (D[idx[ii]] - M)/(ii+1)
		endif else begin
			M = !values.d_nan
		endelse

Page 3 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5593
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22129&goto=46953#msg_46953
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=46953
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

	endif else begin
		for ii=0,n_elements(D) do $
			M += (D[ii] - M)/(ii+1)
	endelse
	
	return, M
end

Subject: Re: mean() function
Posted by Foldy Lajos on Mon, 16 Jan 2006 10:27:34 GMT
View Forum Message <> Reply to Message

Hi,

one small correction: instead of n_elements(...) you should use
n_elements(...)-1.

This approach has an other problem: the elements at the beginning of the
array are divided ~n_elements() times, which can introduce large rounding
errors.

Example:

IDL> print, !version
print, !version
{ x86 linux unix linux 6.2 Jun 20 2005 32 64}

IDL> a=fltarr(10000000l)
IDL> a[0]=1.0e7
IDL> print, alt_mean(a)
 1.02190

vs.

IDL> print, mean(a)
% Compiled module: MEAN.
% Compiled module: MOMENT.
 1.00000

there is no golden way :-)))

regards,
lajos

On Mon, 16 Jan 2006, Maarten wrote:

Page 4 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4102
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22129&goto=46952#msg_46952
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=46952
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> I think that this comes close. I ignores infinite numbers on request.
> Is it fast: no. But implementing the thing is C should be near trivial
> if you have dealt with that before (I haven't, at least not in IDL).
>
> function alt_mean, D, nan=nan
> 	compile_opt defint32, strictarr, logical_predicate, strictarrsubs
>
> 	M = 0.0
>
> 	if keyword_set(nan) then begin
> 		idx = where(finite(D), cnt)
> 		if cnt gt 0 then begin
> 			for ii=0,n_elements(idx) do $
> 				M += (D[idx[ii]] - M)/(ii+1)
> 		endif else begin
> 			M = !values.d_nan
> 		endelse
> 	endif else begin
> 		for ii=0,n_elements(D) do $
> 			M += (D[ii] - M)/(ii+1)
> 	endelse
> 	
> 	return, M
> end
>
>

Page 5 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

