
Subject: compile a routine wich inlude a commun
Posted by L. Testut on Sun, 22 Jan 2006 12:26:58 GMT
View Forum Message <> Reply to Message

Dear IDL users,
 I am a beginner with IDL and I really enjoy this programmation
langage, even if it is not easy at the beginning. I'm building at the
moment an application to work with satellite altimetric data of four
satellites.
 My question is "it is possible to compile a procedure or function
including a COMMON which is not already defined" in others words : "is
it possible to force compilation of procedure or function including a
COMMON which is not already defined" ?

Your answer will probably be : don't use common at all ! (but I don't
know how to do without common)
Regards,
Laurent Testut
Toulouse, France

Subject: Re: compile a routine wich inlude a commun
Posted by David Fanning on Mon, 23 Jan 2006 18:04:39 GMT
View Forum Message <> Reply to Message

David Fanning writes:

> Oh, well, I mean "exactly in the IDL sort of way".
> You know what I mean. Kind of in the way NLEVELS
> gives you exactly that many levels in a Contour plot. :-)

By the way, I've been meaning all morning to point
out that a sense of humor and a taste for ambiguity
and chaos goes a long way toward making IDL programming
more palatable. Control freaks should probably look
elsewhere. :-)

Cheers,

David

--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Page 1 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5625
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22170&goto=47067#msg_47067
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=47067
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22170&goto=47146#msg_47146
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=47146
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: compile a routine wich inlude a commun
Posted by Paul Van Delst[1] on Mon, 23 Jan 2006 18:25:10 GMT
View Forum Message <> Reply to Message

David Fanning wrote:
> David Fanning writes:
>
>
>> Oh, well, I mean "exactly in the IDL sort of way".
>> You know what I mean. Kind of in the way NLEVELS
>> gives you exactly that many levels in a Contour plot. :-)
>
>
> By the way, I've been meaning all morning to point
> out that a sense of humor and a taste for ambiguity
> and chaos goes a long way toward making IDL programming
> more palatable. Control freaks should probably look
> elsewhere. :-)

So, what're you saying? IDL is non-deterministic?

Wow. That's pretty impressive. Not good for a programming language, but still impressive. :o)

paulv

--
Paul van Delst
CIMSS @ NOAA/NCEP/EMC

Subject: Re: compile a routine wich inlude a commun
Posted by David Fanning on Mon, 23 Jan 2006 18:38:52 GMT
View Forum Message <> Reply to Message

Paul Van Delst writes:

> So, what're you saying? IDL is non-deterministic?
> Wow. That's pretty impressive. Not good for a programming language, but still impressive. :o)

That's all I'm saying... :-)

Cheers,

David

--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.

Page 2 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22170&goto=47144#msg_47144
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=47144
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22170&goto=47143#msg_47143
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=47143
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: compile a routine wich inlude a commun
Posted by David Fanning on Mon, 23 Jan 2006 23:16:15 GMT
View Forum Message <> Reply to Message

Paul Van Delst writes:

> Well, they're called pointers but they're not, really. You can't actually "point" to
> anything - just make copies.

Well, they aren't fingers, if that's what you mean. :-)

> But, not being a pointer expert, let me ask the question:
> How *do* you use a pointer in IDL to, uh, well, "point" to an already created variable? Or
> just parts of an already created array?

They are variables that live in a different place
than local variables. Outside the room, if you like.
A pointer can't point to the memory locations of your local
variable because there aren't enough technical support
engineers in the world to sort out why your programs
are suddenly crashing right and left.

Goodness, *all* variables work like this, as far as I
can tell.

 a = 5
 b = a
 b = 3
 print, a

And I don't think you really want to see a 3 printed out!
Chaos (and I have a high tolerance, myself) would reign supreme.

But, there is no reason you can do what you want to do.

 ; Create a local variable.
 x = Indgen(4,4)

 ; Move the variable out of the room.
 ptr = Ptr_New(x, /No_Copy)
 help, x
 X UNDEFINED = <Undefined>

 ; Change a subset of the data
 (*ptr)[1:2, 1:2] = (*ptr)[1:2, 1:2] * 100

Page 3 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22170&goto=47137#msg_47137
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=47137
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ; Move the variable back into the room
 x = Temporary(*ptr)
 Help, *ptr
 <PtrHeapVar2> UNDEFINED = <Undefined>

 Print, x
 0 1 2 3
 4 500 600 7
 8 900 1000 11
 12 13 14 15

The advantage of pointers as variables, is that they don't
go away when you exit the local program unit, so they can
be used by any program unit made aware of them. That's
pretty powerful.

Cheers,

David

--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: compile a routine wich inlude a commun
Posted by Paul Van Delst[1] on Tue, 24 Jan 2006 00:14:08 GMT
View Forum Message <> Reply to Message

David Fanning wrote:
> Paul Van Delst writes:
>
>
>> Well, they're called pointers but they're not, really. You can't actually "point" to
>> anything - just make copies.
>
>
> Well, they aren't fingers, if that's what you mean. :-)

Actually, yes, that's pretty much exactly what I mean. Hence the name: pointers.

>> But, not being a pointer expert, let me ask the question:
>> How *do* you use a pointer in IDL to, uh, well, "point" to an already created variable? Or
>> just parts of an already created array?
>
>

Page 4 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22170&goto=47136#msg_47136
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=47136
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> They are variables that live in a different place
> than local variables.

Well, then they're *not* pointers. They're, umm, "copy/move enablers". :o)

> Outside the room, if you like.
> A pointer can't point to the memory locations of your local
> variable because there aren't enough technical support
> engineers in the world to sort out why your programs
> are suddenly crashing right and left.
>
> Goodness, *all* variables work like this, as far as I
> can tell.
>
> a = 5
> b = a
> b = 3
> print, a
>
> And I don't think you really want to see a 3 printed out!

Sorry, but I don't see the analogy here at all.

 a=5
 b=>a (b points to a)
 a=3
 print, *b

should give you "3", and

 *b=7
 print, a

should give you "7". Because in this example b is a (actual) pointer, it refers to the
same memory as the variable a. Changing either via assignment changes the value in the
memory location.

> Chaos (and I have a high tolerance, myself) would reign supreme.

Erm, not really. This is how actual pointers work (pretty much).

The IDL analogy of a "pointer" is

 a=5
 b=a
 b=3
 a=b
 print, a

Page 5 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

i.e. it's just copying stuff. Not pointing.
>
> But, there is no reason you can do what you want to do.
>
> ; Create a local variable.
> x = Indgen(4,4)
>
> ; Move the variable out of the room.
> ptr = Ptr_New(x, /No_Copy)
> help, x
> X UNDEFINED = <Undefined>

See, here's the problem. You can't point to a named variable with IDL pointers. You can
copy it onto the heap, but not point to it.
>
> ; Change a subset of the data
> (*ptr)[1:2, 1:2] = (*ptr)[1:2, 1:2] * 100
>
> ; Move the variable back into the room
> x = Temporary(*ptr)
> Help, *ptr
> <PtrHeapVar2> UNDEFINED = <Undefined>
>
> Print, x
> 0 1 2 3
> 4 500 600 7
> 8 900 1000 11
> 12 13 14 15

I take issue with the need to "move" these variables around at all. They're pointers. You
shouldn't have to move anything. That's, well, the point.

How is the above example any different from

IDL> x = Indgen(4,4)
IDL> ptr=temporary(x)
IDL> help, x
X UNDEFINED = <Undefined>
IDL> ptr[1:2,1:2]=ptr[1:2,1:2]*100
IDL> x=temporary(ptr)
IDL> print, x
 0 1 2 3
 4 500 600 7
 8 900 1000 11
 12 13 14 15

??

Page 6 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

In both cases you're effectively copying data

I use pointers in Fortran95 for only two things, different things.
1) Point to some nameless space via an allocate statement, e.g.
 integer,pointer::x(:)
 allocate(x(100))
This is similar to the IDL statement
 x = PTR_NEW(lonarr(100))
2) Alias subsections of an array, or different arrays
 integer,target::a(100,100),b(30)
 integer,pointer::x(:)
 ! Make x point to b. Modify elements of x and b changes
 x=>b
 ! Now make x point to slice of a. Modify elements of x and a(:,20) changes
 x=>a(:,20)

As far as I can tell, there is no equivalent to the above (2) in IDL. The ability to
create an alias for a data object without having to copy it - *that's* powerful.

I must be missing something, somewhere.

Anyway, I gotta get home before the bottle shop shuts! :o)

cheers,

paulv

--
Paul van Delst
CIMSS @ NOAA/NCEP/EMC

Subject: Re: compile a routine wich inlude a commun
Posted by David Fanning on Tue, 24 Jan 2006 04:03:27 GMT
View Forum Message <> Reply to Message

Paul Van Delst writes:

> Well, then they're *not* pointers. They're, umm, "copy/move enablers". :o)

I have a feeling JD is going to come to our rescue
and sort the whole thing out for us. At least, I
hope so. :-)

Cheers,

David

Page 7 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22170&goto=47135#msg_47135
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=47135
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: compile a routine wich inlude a commun
Posted by peter.albert@gmx.de on Tue, 24 Jan 2006 08:09:01 GMT
View Forum Message <> Reply to Message

Just my 2 cents: imho, the problem with the given example

p=ptr_new(x[1:2,1:2])

is that x[1:2, 1:2] on the right hand side of the equation is, if I
remember correctly, actually a new temporary variable. So p is pointing
to a temporary variable which has nothing in commion with the variable
x, apart from the fact that its initial values equal the appropriate
ones of x. After that, any operation on p is totally disconnected to x.
On the other hand, Davids example used

p = ptr_new(x)

and here, p is actually pointing to the memory space occupied by x, so
modifying *p actually does modify x.

And yes, for this little example the effect is the same when using
temporary() two times, as Paul suggested. But this is not the, umh,
only point of pointers. I can hardly imagine how something like Davids
highly appreciated linked list object would work using temporary()
instead of pointers.

But well, looking at Pauls original wish of using pointers to alias
subsets of an array; given the fact that x[...] actually creates a new
temporary variable makes me feel that this is actually not possible in
IDL. Of course, there might be a way using histogram ...

Cheers,

 Peter

Subject: Re: compile a routine wich inlude a commun
Posted by Maarten[1] on Tue, 24 Jan 2006 10:04:01 GMT
View Forum Message <> Reply to Message

Page 8 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5483
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22170&goto=47132#msg_47132
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=47132
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5593
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22170&goto=47131#msg_47131
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=47131
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

JD Smith wrote:

> I think he means pointers are a kludge for extensible arrays.

I think you can read minds, that is what I meant.

> *But*, and this is a big but, all that flexibility comes at
> some real cost in speed, which grows with the data size, perhaps
> non-linearly.

Understood, and at times: accepted.

[snip, reasons to use IDL, and if speed is added, the "flexible"
languages may turn into a two-lobed "mess" as well]

> 6) Want to share code which just runs with colleagues, avoiding the
> package dependency and moving target problems of roll your own
> solutions like Python + numarray, or numeric, or numpy, ...
>
> Of course, this should include a footnote of {Rich colleagues who can
> afford IDL licenses}.

I can see that, and it is one of the reasons I haven't switched to
Python yet. The footnote adds one of my private adversions: at work I
can use IDL, good ideas occuring at home may go wasted.

[snip: links to IDL <---> python. thanks]

> Another thing you'll notice with most of these packages (and, sadly,
> even GDL) -- plotting is typically a compromise, borrowing a
> pre-existing package like GnuPlot, or matplotlib, not very cleanly
> integrated. It's a real pain to integrate decent graphics in a
> compatible, cross-platform way. I think this problem will eventually
> be solved, but for now, if I send you a Python+numpy+matplotlib
> script, it probably wouldn't run out of the box.

Agreed. Cairo Graphics (http://cairographics.org/introduction) seem
promising, but "not there yet". For my thesis I didn't like the output
of any of the graphics packages, so the final output was created in
MetaPost. Today I might have choosen PyX.

[on the Drizzling page at David's site]

> As one of the perpetrators of that page, I have to agree, these
> examples (and many of the IDL Way) are not terribly obvious. Some
> have maintenance concerns, to be sure. But, they enable you, in a
> typeless language, to obtain the kind of speed of operation on large
> (many MB to many GB) piles of data that are simply otherwise unheard

Page 9 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> of.

I think we disagree where the balance between readability and execution
speed lies.

> Moreover, a elegant Python Drizzle would probably run 10x slower even
> than the straightforward loop-based IDL drizzle. At some point, you
> give up and write it quite simply in C, spending 95% of the time and C
> code figuring out how to communicate the results back with IDL. So, I
> agree with the original poster that the algorithms mentioned, among
> many others in IDL, are not at all transparent, while simple versions
> of the same are not at all fast. However, in my experience, this is
> the price you pay in the tradeoff of elegance and raw speed.

I prefer my "normal" everyday use to be elegant, and when I really need
the speed (after profiling, no need for premature optimization), an
easy route to C, Fortran, (assembly, no, I'm not that nuts) is
appreciated.

> I think if RSI wants to do one thing to move the tradeoff forward,
> they should take MAKE_DLL and vastly expand its scope, allowing you to
> trivially stick *simple* bits of C-code callout which operate directly
> on IDL data in memory.

I have some experience with inserting C code into Labview. There are
several methods to do so: one truly integrated, and I think it is about
as hard to do as in IDL, and probably harder to debug. Another method
is to call into a shared library. As long as you leave the memory
allocation of anything that gets communicated back into (Labview/IDL)
to the calling application, it is near trivial - just be careful to
clean up after yourself.

It wasn't at the level where pyrex lives, but easy enough, and a
compilable shell for debugging was easy enough to generate.

I hope IDL will get to that point - or maybe I've not found the right
sample code to do this (especially on a 2D array). A pity that SWIG
doesn't support IDL, it might make some things quite a bit easier.

> Python has several projects aiming to do just
> this, and if any of them become standard, this may change the
> scientific coding landscape significantly.

I think that is a given, it is only a matter of time. Another project
to keep an eye on is PyTables: transparent persistent storage of arrays
in an HDF file with a decent speed.

Maarten

Page 10 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: compile a routine wich inlude a commun
Posted by Paul Van Delst[1] on Tue, 24 Jan 2006 14:42:18 GMT
View Forum Message <> Reply to Message

Peter Albert wrote:
> Just my 2 cents: imho, the problem with the given example
>
> p=ptr_new(x[1:2,1:2])
>
> is that x[1:2, 1:2] on the right hand side of the equation is, if I
> remember correctly, actually a new temporary variable. So p is pointing
> to a temporary variable which has nothing in commion with the variable
> x, apart from the fact that its initial values equal the appropriate
> ones of x. After that, any operation on p is totally disconnected to x.
> On the other hand, Davids example used
>
> p = ptr_new(x)
>
> and here, p is actually pointing to the memory space occupied by x, so
> modifying *p actually does modify x.

No, it does not. Whether or not you point to the "complete" variable, or just a part of
it, a new heap "variable" is created.

IDL> x=indgen(4,4)
IDL> print, x
 0 1 2 3
 4 5 6 7
 8 9 10 11
 12 13 14 15
IDL> p=ptr_new(x)
IDL> print, *p
 0 1 2 3
 4 5 6 7
 8 9 10 11
 12 13 14 15
IDL> print, (*p)[1:2,1:2]
 5 6
 9 10
IDL> (*p)[1:2,1:2] = (*p)[1:2,1:2] + 100
IDL> print, *p
 0 1 2 3
 4 105 106 7
 8 109 110 11
 12 13 14 15
IDL> print, x
 0 1 2 3
 4 5 6 7
 8 9 10 11

Page 11 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22170&goto=47129#msg_47129
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=47129
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 12 13 14 15

> And yes, for this little example the effect is the same when using
> temporary() two times, as Paul suggested. But this is not the, umh,
> only point of pointers. I can hardly imagine how something like Davids
> highly appreciated linked list object would work using temporary()
> instead of pointers.

I agree, but you create a link list object once and that's pretty much it. If you've done
your job right, you don't have to do much else except use the object. On the other hand,
aliasing is something that comes in handy in day-to-day usage. My Fortran95 linked list
code hasn't been touched pretty much since I wrote it. But I use aliasing a lot to, for
example, concatenate complicated and large data structures. Aliasing let's me manipulate
the structures more naturally with minimum copying/creation of temporary vars.

> But well, looking at Pauls original wish of using pointers to alias
> subsets of an array; given the fact that x[...] actually creates a new
> temporary variable makes me feel that this is actually not possible in
> IDL.

That's what I'm thinking also. There's probably some fundamental design issue that
prevents it from being a simple thing to do. Sort of like passing structure components as
arguments and expecting them to be writable in the called procedure - the
pass-by-reference/value issue previosuly mentioned.

> Of course, there might be a way using histogram ...

That's possible :o) But, then, they would be histopointers. Or maybe pointygrams? :o)

paulv

--
Paul van Delst
CIMSS @ NOAA/NCEP/EMC

Subject: Re: compile a routine wich inlude a commun
Posted by peter.albert@gmx.de on Tue, 24 Jan 2006 16:01:18 GMT
View Forum Message <> Reply to Message

> No, it does not. Whether or not you point to the "complete" variable, or just a part of
> it, a new heap "variable" is created.
>
> IDL> x=indgen(4,4)
> IDL> print, x
> 0 1 2 3
> 4 5 6 7
> 8 9 10 11

Page 12 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5483
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22170&goto=47125#msg_47125
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=47125
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> 12 13 14 15
> IDL> p=ptr_new(x)
> IDL> print, *p
> 0 1 2 3
> 4 5 6 7
> 8 9 10 11
> 12 13 14 15
> IDL> print, (*p)[1:2,1:2]
> 5 6
> 9 10
> IDL> (*p)[1:2,1:2] = (*p)[1:2,1:2] + 100
> IDL> print, *p
> 0 1 2 3
> 4 105 106 7
> 8 109 110 11
> 12 13 14 15
> IDL> print, x
> 0 1 2 3
> 4 5 6 7
> 8 9 10 11
> 12 13 14 15

Damn, I should have tried it before. I was so sure :-(

But then, this _is_ a polite group. Nobody murmuring something like
rtfm, while a look in the manual reveals :

"If InitExpr is provided, PTR_NEW uses it to initialize the newly
created heap variable. Note that the new heap variable does not point
at the InitExpr variable in any sense-the new heap variable simply
contains a copy of its value."

Well, here is is, black on white. So you _can't_ alias variables or
subarrays.

Cheers,

 Peter

Subject: Re: compile a routine wich inlude a commun
Posted by Paul Van Delst[1] on Tue, 24 Jan 2006 16:09:56 GMT
View Forum Message <> Reply to Message

Peter Albert wrote:
>> No, it does not. Whether or not you point to the "complete" variable, or just a part of
>> it, a new heap "variable" is created.
>>

Page 13 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22170&goto=47124#msg_47124
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=47124
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> IDL> x=indgen(4,4)
>> IDL> print, x
>> 0 1 2 3
>> 4 5 6 7
>> 8 9 10 11
>> 12 13 14 15
>> IDL> p=ptr_new(x)
>> IDL> print, *p
>> 0 1 2 3
>> 4 5 6 7
>> 8 9 10 11
>> 12 13 14 15
>> IDL> print, (*p)[1:2,1:2]
>> 5 6
>> 9 10
>> IDL> (*p)[1:2,1:2] = (*p)[1:2,1:2] + 100
>> IDL> print, *p
>> 0 1 2 3
>> 4 105 106 7
>> 8 109 110 11
>> 12 13 14 15
>> IDL> print, x
>> 0 1 2 3
>> 4 5 6 7
>> 8 9 10 11
>> 12 13 14 15
>
>
> Damn, I should have tried it before. I was so sure :-(
>
> But then, this _is_ a polite group. Nobody murmuring something like
> rtfm, while a look in the manual reveals :
>
> "If InitExpr is provided, PTR_NEW uses it to initialize the newly
> created heap variable. Note that the new heap variable does not point
> at the InitExpr variable in any sense-the new heap variable simply
> contains a copy of its value."
>
> Well, here is is, black on white. So you _can't_ alias variables or
> subarrays.

Huh, how 'bout that? It's in the manual. (ehem)

I wonder why RSI decided to implement pointers this way? Or, to rephrase, why they called
the implementation they chose a pointer?

paulv

Page 14 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

--
Paul van Delst
CIMSS @ NOAA/NCEP/EMC

Subject: Re: compile a routine wich inlude a commun
Posted by Paul Van Delst[1] on Tue, 24 Jan 2006 16:13:02 GMT
View Forum Message <> Reply to Message

Paul Van Delst wrote:
> Huh, how 'bout that? It's in the manual. (ehem)

Just to be painfully clear, the above is not sarcasm. I was actually surprised to see that
the manual states it that clearly. I should've read the online help earlier and preserved
some electrons.

paulv

--
Paul van Delst
CIMSS @ NOAA/NCEP/EMC

Subject: Re: compile a routine wich inlude a commun
Posted by David Fanning on Tue, 24 Jan 2006 16:26:44 GMT
View Forum Message <> Reply to Message

Paul Van Delst writes:

> I wonder why RSI decided to implement pointers this way? Or, to rephrase, why they called
> the implementation they chose a pointer?

Originally they were called "handles", but that annoyed
pretty much everyone. :-)

Cheers,

David

P.S. And before *that* they were called user values of
unrealized top-level base widgets. But that's really going
too far back in history, probably. :-)

--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Page 15 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22170&goto=47123#msg_47123
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=47123
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22170&goto=47122#msg_47122
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=47122
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: compile a routine wich inlude a commun
Posted by Paul Van Delst[1] on Tue, 24 Jan 2006 16:58:20 GMT
View Forum Message <> Reply to Message

David Fanning wrote:
> Paul Van Delst writes:
>
>
>> I wonder why RSI decided to implement pointers this way? Or, to rephrase, why they called
>> the implementation they chose a pointer?
>
>
> Originally they were called "handles", but that annoyed
> pretty much everyone. :-)

Ah, yes. Good old handles. How did we widget-program without them? I guess I shouldn't be
too hard on the IDL naming conventions. Coming up with a descriptive, abstract name for
something can be difficult.

paulv

>
> Cheers,
>
> David
>
> P.S. And before *that* they were called user values of
> unrealized top-level base widgets. But that's really going
> too far back in history, probably. :-)
>

--
Paul van Delst
CIMSS @ NOAA/NCEP/EMC

Subject: Re: compile a routine wich inlude a commun
Posted by JD Smith on Tue, 24 Jan 2006 20:55:35 GMT
View Forum Message <> Reply to Message

On Mon, 23 Jan 2006 21:03:27 -0700, David Fanning wrote:

> Paul Van Delst writes:
>
>> Well, then they're *not* pointers. They're, umm, "copy/move enablers".
>> :o)
>

Page 16 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22170&goto=47119#msg_47119
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=47119
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22170&goto=47112#msg_47112
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=47112
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> I have a feeling JD is going to come to our rescue and sort the whole
> thing out for us. At least, I *hope* so. :-)

IDL pointers are really properly called "references", and are similar
to references in many other languages, like Perl. In some ways, they
are more limited, since they can only reference a special pool of
variables which are otherwise inaccessible: the "heap variables".

In many languages, there are two ways to make a reference: a reference
can be made of a pre-existing normal variable, or a new "anonymous"
reference can be made, essentially referring to a freshly made heap
variable. IDL only supports on the latter method -- anonymous
references -- not the former method. There is no "address-of"
operator, so there is no way to take an address of an existing
variable, ala:

IDL> x=2
IDL> new_ptr=&x ;; No such thing

It just doesn't exist. Pointer heap variables and normal variables
will forever live their separate lives. You *can* cheaply re-assign
the actual memory pointed to by a regular variable to a pointer heap
variable, and visa versa, using the method David already outlined:

IDL> x=indgen(1000000L)
IDL> p=ptr_new(x,/NO_COPY) ;x now undefined
IDL> x=temporary(*p) ;*p now undefined

But at no time can you have more than one reference to a given normal
IDL variable (e.g. two ways to modify it). You can, of course, have
multiple references to each pointer heap variable (or none at all,
which is a great way to leak memory). This is covered in the pointer
tutorial.

One very basic fact about IDL pointers is that they are very heavy,
both in terms of compute time, and memory. Try this:

IDL> m=memory(/current)
IDL> a=ptrarr(10000L,/ALLOCATE_HEAP) & for i=0,10000L-1 do *a[i]=1L
IDL> print,(memory(/current)-m)/1024
 382
IDL> a=0
IDL> m=memory(/current)
IDL> a=replicate(1L,10000L)
IDL> print,(memory(/current)-m)/1024
 39

Using a pointer to store 10000 long integers (1L) takes approximately

Page 17 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

10x as much memory as storing those 10000 integers directly in an
array. This is because even *empty* IDL variables take up around 35
bytes of memory. All this extra memory goes to all the additional
information associated with each and every IDL variable (mostly things
like variable type, array lengths, etc. -- see idl_export.h if you are
curious).

Here's how to see that:

IDL> a=0
IDL> m=memory(/current)
IDL> a=ptrarr(10000L,/ALLOCATE_HEAP)
IDL> print,float(memory(/current)-m)/10000L
 36.2015

So, "pointer" is really a bad name; "anonymous reference" would be a
better (if longer) name. The problem with "pointer" is it is comes
with no small amount of baggage from association with pointers in
languages like C. Unlike C pointers, which are very lightweight,
these "pointers" can't really be used for large, nested data
structures, without a fairly large memory and speed penalty (not to
mention the penalty that looping over many pointers entails). For
this reason, the best use of pointers in IDL is to provide persistent,
flexible storage for more typical IDL variable types, like large
arrays or structures, which can be accessed and operated on without
this penalty. Also unlike C pointers, IDL pointers can't be used to
access or write memory outside of the IDL address space, so in that
sense are much safer than C pointers.

JD

Subject: Re: compile a routine wich inlude a commun
Posted by JD Smith on Tue, 24 Jan 2006 21:05:09 GMT
View Forum Message <> Reply to Message

>
> That's what I'm thinking also. There's probably some fundamental design
> issue that prevents it from being a simple thing to do. Sort of like
> passing structure components as arguments and expecting them to be
> writable in the called procedure - the pass-by-reference/value issue
> previosuly mentioned.

The design issue is that since normal variables can't reference
subsets of arrays of other variables, neither can pointer variables,
since they are exactly the same thing.

By the way, IDL always does pass all arguments by reference, it just

Page 18 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22170&goto=47111#msg_47111
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=47111
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

happens that if you feed a routine a temporary variable, like a
structure member, or array subset, that variable is freed after the
call... so it only *seems* these are being passed by value. In fact,
modifying such arguments modifies the temporary variable, which is of
course, immediately deleted, and so was quite a useless operation.

JD

Subject: Re: compile a routine wich inlude a commun
Posted by JD Smith on Tue, 24 Jan 2006 21:13:23 GMT
View Forum Message <> Reply to Message

On Tue, 24 Jan 2006 02:04:01 -0800, Maarten wrote:

> JD Smith wrote:
>
>> I think he means pointers are a kludge for extensible arrays.
>
> I think you can read minds, that is what I meant.

Not mind reading, just shared annoyance.

>> As one of the perpetrators of that page, I have to agree, these
>> examples (and many of the IDL Way) are not terribly obvious. Some
>> have maintenance concerns, to be sure. But, they enable you, in a
>> typeless language, to obtain the kind of speed of operation on large
>> (many MB to many GB) piles of data that are simply otherwise unheard
>> of.
>
> I think we disagree where the balance between readability and execution
> speed lies.

The balance, I find, depends quite sensitively on the reader.

>> Moreover, a elegant Python Drizzle would probably run 10x slower even
>> than the straightforward loop-based IDL drizzle. At some point, you
>> give up and write it quite simply in C, spending 95% of the time and C
>> code figuring out how to communicate the results back with IDL. So, I
>> agree with the original poster that the algorithms mentioned, among
>> many others in IDL, are not at all transparent, while simple versions
>> of the same are not at all fast. However, in my experience, this is
>> the price you pay in the tradeoff of elegance and raw speed.
>
> I prefer my "normal" everyday use to be elegant, and when I really need
> the speed (after profiling, no need for premature optimization), an
> easy route to C, Fortran, (assembly, no, I'm not that nuts) is
> appreciated.

Page 19 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22170&goto=47110#msg_47110
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=47110
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Elegance is also fairly subjective, especially when it comes to IDL
programming. After you immerse yourself in vector-based programming for
long enough, the sight of a loop is highly unsettling, not just for the
implicit speed penalty it may well entail, but in terms of perceived
elegance as well. Whether anyone else in the world would share that
aesthetic is debatable.

JD

Subject: Re: compile a routine wich inlude a commun
Posted by Foldy Lajos on Tue, 24 Jan 2006 21:30:22 GMT
View Forum Message <> Reply to Message

Hi,

and the odd thing is, that functions sometimes return these references,
not the values:

function f, arg
return, arg
end

a=1
(f(a))=2
help, a

A INT = 2

regards,
lajos

On Tue, 24 Jan 2006, JD Smith wrote:

> By the way, IDL always does pass all arguments by reference, it just
> happens that if you feed a routine a temporary variable, like a
> structure member, or array subset, that variable is freed after the
> call... so it only *seems* these are being passed by value. In fact,
> modifying such arguments modifies the temporary variable, which is of
> course, immediately deleted, and so was quite a useless operation.
>
> JD
>
>

Page 20 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4102
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22170&goto=47109#msg_47109
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=47109
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: compile a routine wich inlude a commun
Posted by JD Smith on Tue, 24 Jan 2006 22:15:36 GMT
View Forum Message <> Reply to Message

On Tue, 24 Jan 2006 22:30:22 +0100, Fï¿½LDY Lajos wrote:

> Hi,
>
> and the odd thing is, that functions sometimes return these references,
> not the values:
>
> function f, arg
> return, arg
> end
>
> a=1
> (f(a))=2
> help, a
>
> A INT = 2
>

Interesting. Try:

IDL> (f(a[0]))=2
% Expression must be named variable in this context: <INT (2)>.
% Execution halted at: $MAIN$

and you'll see the distinction. Temporary variables can be used for
many things, but direct assignment is not possible. One good use of
temporary variables is subscripting or structure dereferencing them:

IDL> a=(size(b,/DIMENSIONS)[0]

JD

Page 21 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22170&goto=47108#msg_47108
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=47108
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

