Subject: Re: red noise?
Posted by Craig Markwardt on Sat, 11 Mar 2006 21:41:26 GMT
View Forum Message <> Reply to Message

"R.G. Stockwell" <no@email.please> writes:

- > Does anyone have a routine that calculates a red noise random time series?
- > (where red noise indicates a slope of 1/f^2 in the power spectrum)

>

- > I whipped up an autoregressive routine to do this, but the slope flattens
- > out
- > at the higher frequencies.

>

- > Pink noise would be nice as well. In fact, if someone had code to create
- > a time series of random variables with any arbitrary spectral slope, that
- > would
- > be great!

Sure, here is a function that does that, modulo a normalization, which you will have to diddle yourself. You enter the frequency and desired PDS, and the output is one realization of such a power spectrum, assuming random phases. [Of course there are an infinite number of realizations with the same PDS. The PDS discards 50% all phase information so you can't go backward to a unique time series from it alone.]

Craig

```
; PDS2LC
; FF - input frequency
; PDS - input PDS
; TOTRATE - input scale factor for output time series
; SEED - (optional) random number seed
; TIME - output time samples
; RETURNS: time series sampled at TIME bins
;
function pds2lc, ff, pds, totrate, seed=seed, time=tt

df = ff(1) - ff(0)
texp = 1/df
dt = 0.5/max(ff)
npts = n_elements(ff)

cpds = sqrt(pds) * exp(2d*!dpi*dcomplex(0,randomu(seed,npts)))
cpds = [cpds, 0, reverse(conj(cpds(1:*)))]
cpds = cpds * sqrt(texp*totrate/2)
```

```
cpds(0) = 0

clc = fft(cpds,-1)
 lc = (double(clc) + totrate*dt)>0
 tt = n_elements(lc)*dt

return, lc
end
```

--

Craig B. Markwardt, Ph.D. EMAIL: craigmnet@REMOVEcow.physics.wisc.edu Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response

Subject: Re: red noise?

Posted by news.qwest.net on Sun, 12 Mar 2006 00:18:38 GMT

View Forum Message <> Reply to Message

"Craig Markwardt" <craigmnet@REMOVEcow.physics.wisc.edu> wrote in message news:onr758lkvt.fsf@cow.physics.wisc.edu...

- - -

Ξ.

- > Sure, here is a function that does that, modulo a normalization, which
- > you will have to diddle yourself. You enter the frequency and desired
- > PDS, and the output is one realization of such a power spectrum,
- > assuming random phases. [Of course there are an infinite number of
- > realizations with the same PDS. The PDS discards 50% all phase
- > information so you can't go backward to a unique time series from it
- > alone.]

>

> Craig

Thanks Craig,

it wasn't exactly what I was looking for; I wasn't detailed enough in my original post. I do not want to use an fft to generate the time series, since

my purpose is to study in detail the effects of windowing, and sampling, on

shape and slope of the spectra. A red spectrum has a large dynamic range,

and

the sidelobes of the powerful low frequencies can contaminate the weak higher frequencies. I am also interested in analyzing the aliasing that occurs

when one is samples a red spectrum (which may flatten out the frequency response near the nuquist).

So I am looking for a time domain technique, either an autoregressive process

(which I have but it doesn't give a pure red spectrum, it is merely approximately red

through the mid freqs) or perhaps a digitial filter of white noise.

Thanks, bob

Subject: Re: red noise?

Posted by Ricardo Bugalho on Wed, 15 Mar 2006 15:37:32 GMT

View Forum Message <> Reply to Message

Hello,

if you take white noise and pass it through an integrator (1/s), don't you get red noise?

On Sat, 2006-03-11 at 17:18 -0700, R.G. Stockwell wrote:

- > "Craig Markwardt" <craigmnet@REMOVEcow.physics.wisc.edu> wrote in message
- > news:onr758lkvt.fsf@cow.physics.wisc.edu...
- > through the mid freqs) or perhaps a digitial filter of white noise.