
Subject: printing an array from pointers
Posted by bressert@gmail.com on Tue, 28 Mar 2006 08:12:21 GMT
View Forum Message <> Reply to Message

Hello Everyone,

I am currently writing a short script using pointers. The script's
objective to create an array created by a loop of commands and then
print it into an ascii file. Below is an outline of how the pointers is
being used. Bear in mind, the problem that I am having is printing all
the pointers in a long list.

=====================================
PRO EXAMPLE

ptr = ptrarr(10)

for i = 0, 9 do begin
 etc
 arr = (some 1 by 8 vector)
 ptr(i) = ptr_new(arr)
endfor

print, ptr <------ this is where im having the problem
======================================

I know that "print, *ptr(some number between 0 and 9)" works, but
this will only print a 1 by 8 vector. What I really want is a 10 by 8
matrix.

Would anyone know where I should go from this stage? Thank you for your
help in advance.

Eli

Subject: Re: printing an array from pointers
Posted by Paul Van Delst[1] on Wed, 29 Mar 2006 16:06:48 GMT
View Forum Message <> Reply to Message

bressert@gmail.com wrote:
> Hi Peter,
>
> Another question, since I have ran into a new bump. Is there a way to
> say
>
> arr = fltarr(A,8)
>

Page 1 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5645
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22551&goto=48125#msg_48125
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=48125
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22551&goto=48184#msg_48184
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=48184
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> where A is a number that fluctuates? So rather than stating that arr is
> A rows long, it is a number determined by the total output of the for
> loop? For example,
>
> arr = fltarr(150,8)
>
> will be sufficient in gathering all the 'for' outputs, but I will have
> trailing zeros that have not been assigned an output value. Using UNIQ
> or an 'if' to get rid of the zeros in the array does not work, since
> some of the output from the 'for' loop is zero. This was the original
> reason why I used the pointers, since there was no requirement of
> predetermination of the number of rows. Any suggestions or ideas would
> be greatly appreciated. Thanks again for the help.

Keep in mind that the first index is the one that increments in contiguous memory
(opposite to C) so maybe arr=fltarr(8,a) is required.

But, regardless, you must know the maximum limit of the for loop in advance, no? In other
examples posted in this thread, we';ve seen:

arr = fltarr(10,8)
for i = 0,9 do begin
 ...
 arr[i,*] = (some 1 by 8 vector)
endfor

That can be re-written as:

loop_limit = func_to_compute_loop_limit()
arr = fltarr(8,loop_limit) ! More efficient that (loop_limit,8)
for i=0,loop_limit-1 do begin

 arr[*,i] = (some 1 by 8 vector)
endfor

If you don;t know the loop limit in advance you can do two things:

1) Concatenation

i=-1
WHILE (some condition) DO BEGIN
 i++

 if(i eq 0) then $
 arr = (some 1 by 8 vector) $

Page 2 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 else $
 arr = [[arr],[(some 1 by 8 vector)]]
ENDWHILE

but this can be very slow if you concatenate a lot of stuff. For small arrays (low values
of i) it's great. For large values of i, not so good.

2) Truncation

arr=fltarr(8,big_enough)
FOR i=0,big_enough-1 DO BEGIN
 ...
 arr[*,i] = (some 1 by 8 vector)
 if (some condition) then begin
 arr = arr[*,0:i]
 BREAK
 endif
ENDFOR

this is nearly always faster.

Note: all the above typed off top of head, so no guarantees. Test. Especially the
concatenate stuff. I can never remember how many groups of [[][]]'s to use for multi-D arrays.

paulv

--
Paul van Delst
CIMSS @ NOAA/NCEP/EMC

Subject: Re: printing an array from pointers
Posted by David Fanning on Wed, 29 Mar 2006 16:14:38 GMT
View Forum Message <> Reply to Message

Paul Van Delst writes:

> Note: all the above typed off top of head, so no guarantees. Test. Especially the
> concatenate stuff. I can never remember how many groups of [[][]]'s to use for multi-D arrays.

One more for every dimension you are trying to concatenate:

As rows: t = [a, b] ; extra = 0
As cols: t = [[a], [b]] ; extra = 1
As frames: t = [[[a]], [[b]]] ; extra = 2

Page 3 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22551&goto=48183#msg_48183
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=48183
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

etc. ; extra = etc

Cheers,

David
--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: printing an array from pointers
Posted by Paul Van Delst[1] on Wed, 29 Mar 2006 16:29:49 GMT
View Forum Message <> Reply to Message

David Fanning wrote:
> Paul Van Delst writes:
>
>
>> Note: all the above typed off top of head, so no guarantees. Test. Especially the
>> concatenate stuff. I can never remember how many groups of [[][]]'s to use for multi-D arrays.
>
>
> One more for every dimension you are trying to concatenate:
>
> As rows: t = [a, b] ; extra = 0
> As cols: t = [[a], [b]] ; extra = 1
> As frames: t = [[[a]], [[b]]] ; extra = 2
> etc. ; extra = etc

No "etc" allowed:

IDL> a=4
IDL> b=7
IDL> t = [a, b]
IDL> help, t
T INT = Array[2]
IDL> t = [[a], [b]]
IDL> help, t
T INT = Array[1, 2]
IDL> t = [[[a]], [[b]]]
IDL> help, t
T INT = Array[1, 1, 2]
IDL> t = [[[[a]]], [[[b]]]]

t = [[[[a]]], [[[b]]]]
 ^

Page 4 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22551&goto=48182#msg_48182
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=48182
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

% Only three levels of variable concatenation are allowed.

I've always found this behaviour confusing. Why special case for only three levels?

paulv

--
Paul van Delst
CIMSS @ NOAA/NCEP/EMC

Subject: Re: printing an array from pointers
Posted by David Fanning on Wed, 29 Mar 2006 16:43:37 GMT
View Forum Message <> Reply to Message

Paul Van Delst writes:

> No "etc" allowed:
>
> IDL> a=4
> IDL> b=7
> IDL> t = [a, b]
> IDL> help, t
> T INT = Array[2]
> IDL> t = [[a], [b]]
> IDL> help, t
> T INT = Array[1, 2]
> IDL> t = [[[a]], [[b]]]
> IDL> help, t
> T INT = Array[1, 1, 2]
> IDL> t = [[[[a]]], [[[b]]]]
>
> t = [[[[a]]], [[[b]]]]
> ^
> % Only three levels of variable concatenation are allowed.
>
>
> I've always found this behaviour confusing. Why special case for only three levels?

Oh... because it's IDL, that's why. :-)

Cheers,

David

--
David Fanning, Ph.D.

Page 5 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22551&goto=48181#msg_48181
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=48181
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Page 6 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

