Subject: printing an array from pointers
Posted by bressert@gmail.com on Tue, 28 Mar 2006 08:12:21 GMT

View Forum Message <> Reply to Message

Hello Everyone,

| am currently writing a short script using pointers. The script's
objective to create an array created by a loop of commands and then
print it into an ascii file. Below is an outline of how the pointers is
being used. Bear in mind, the problem that | am having is printing all
the pointers in a long list.

PRO EXAMPLE
ptr = ptrarr(10)

fori=0, 9 do begin
etc
arr = (some 1 by 8 vector)
ptr(i) = ptr_new(arr)
endfor

| know that "print, *ptr(some number between 0 and 9)" works, but
this will only print a 1 by 8 vector. What | really want is a 10 by 8
matrix.

Would anyone know where | should go from this stage? Thank you for your
help in advance.

Eli

Subject: Re: printing an array from pointers
Posted by Paul Van Delst[1] on Wed, 29 Mar 2006 16:06:48 GMT

View Forum Message <> Reply to Message

bressert@gmail.com wrote:
Hi Peter,

>

>

> Another question, since | have ran into a new bump. Is there a way to
> say
>
>
>

arr = fltarr(A,8)

Page 1 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5645
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22551&goto=48125#msg_48125
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=48125
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22551&goto=48184#msg_48184
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=48184
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

where A is a number that fluctuates? So rather than stating that arr is
A rows long, it is a number determined by the total output of the for
loop? For example,

arr = fltarr(150,8)

will be sufficient in gathering all the 'for' outputs, but | will have

trailing zeros that have not been assigned an output value. Using UNIQ
or an 'if' to get rid of the zeros in the array does not work, since

some of the output from the 'for' loop is zero. This was the original
reason why | used the pointers, since there was no requirement of
predetermination of the number of rows. Any suggestions or ideas would
be greatly appreciated. Thanks again for the help.

VVVVVVVYVYVYVYVYVYV

Keep in mind that the first index is the one that increments in contiguous memory
(opposite to C) so maybe arr=fltarr(8,a) is required.

But, regardless, you must know the maximum limit of the for loop in advance, no? In other
examples posted in this thread, we';ve seen:

arr = fltarr(10,8)
for i =0,9 do begin

arr[i,*] = (some 1 by 8 vector)
endfor

That can be re-written as:

loop_limit = func_to_compute_loop_limit()
arr = fltarr(8,loop_limit) ! More efficient that (loop_limit,8)
for i=0,loop_limit-1 do begin

arr[*,i] = (some 1 by 8 vector)
endfor

If you don;t know the loop limit in advance you can do two things:
1) Concatenation

i=1
WHILE (some condition) DO BEGIN
i++

if(i eq 0) then $
arr = (some 1 by 8 vector) $

Page 2 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

else $
arr = [[arr],[(some 1 by 8 vector)]]
ENDWHILE

but this can be very slow if you concatenate a lot of stuff. For small arrays (low values
of i) it's great. For large values of i, not so good.

2) Truncation

arr=fltarr(8,big_enough)
FOR i=0,big_enough-1 DO BEGIN

arr[*,i] = (some 1 by 8 vector)
if (some condition) then begin
arr = arr[*,0:1]
BREAK
endif
ENDFOR

this is nearly always faster.

Note: all the above typed off top of head, so no guarantees. Test. Especially the
concatenate stuff. | can never remember how many groups of [[][]]'s to use for multi-D arrays.

paulv

Paul van Delst
CIMSS @ NOAA/NCEP/EMC

Subject: Re: printing an array from pointers
Posted by David Fanning on Wed, 29 Mar 2006 16:14:38 GMT

View Forum Message <> Reply to Message

Paul Van Delst writes:

> Note: all the above typed off top of head, so no guarantees. Test. Especially the
> concatenate stuff. | can never remember how many groups of [[][]]'s to use for multi-D arrays.

One more for every dimension you are trying to concatenate:
As rows: t = [a, b] ;extra=0

As cols: t=[[a], [b]] yextra=1
As frames: t = [[[a]], [[b]]] ; extra = 2

Page 3 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22551&goto=48183#msg_48183
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=48183
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

etc. ; extra = etc

Cheers,
David
David Fanning, Ph.D.

Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: printing an array from pointers
Posted by Paul Van Delst[1] on Wed, 29 Mar 2006 16:29:49 GMT

View Forum Message <> Reply to Message

David Fanning wrote:

> Paul Van Delst writes:
>

>
>> Note: all the above typed off top of head, so no guarantees. Test. Especially the
>> concatenate stuff. | can never remember how many groups of [[][]]'s to use for multi-D arrays.

One more for every dimension you are trying to concatenate:

As rows: t = [a, b] ;extra=0
As cols: t=[[a], [b]] ;extra=1
As frames: t = [[[a]], [[b]]] ; extra = 2
etc. ; extra = etc

VVVVYVYVYVYV

No "etc" allowed:

IDL> a=4

IDL> b=7

IDL>t = [a, b]

IDL> help, t

T INT = Array[2]
IDL>t=1[a], [b]]

IDL> help, t

T INT = Array[1, 2]
IDL>t = [[[a]], [[b]]]

IDL> help, t

T INT = Array[1, 1, 2]

IDL> t = [[[[a]]], [[[b]I]]
t=[[[lall, [[[b]]]A]

Page 4 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22551&goto=48182#msg_48182
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=48182
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

% Only three levels of variable concatenation are allowed.

I've always found this behaviour confusing. Why special case for only three levels?

paulv

Paul van Delst
CIMSS @ NOAA/NCEP/EMC

Subject: Re: printing an array from pointers
Posted by David Fanning on Wed, 29 Mar 2006 16:43:37 GMT

View Forum Message <> Reply to Message

Paul Van Delst writes:

No "etc" allowed:

IDL> a=4

IDL> b=7

IDL>t =[a, b]

IDL> help, t

T INT = Array[2]
IDL>t=[[a], [b]]

IDL> help, t

T INT = Array[1, 2]
IDL>t = [[[a]], [[b]]]

IDL> help, t

T INT = Array[1, 1, 2]

IDL> t = [[[[a]l], [[[o]l]]
t=[[[alll, [Ib]1]]

% Only three levels of variable concatenation are allowed.

VVVVVVVVVVVVVVYVVYVYVYVYVYV

I've always found this behaviour confusing. Why special case for only three levels?
Oh... because it's IDL, that's why. :-)
Cheers,

David

David Fanning, Ph.D.

Page 5 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22551&goto=48181#msg_48181
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=48181
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Page 6 of 6 ---- Generated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

