Subject: Re: Optimization help
Posted by Andrew Cool on Fri, 31 Mar 2006 01:54:07 GMT

View Forum Message <> Reply to Message

Jonathan Greenberg wrote:
| was wondering if there are any tricks to speeding up the following
database merging problem:

Say | have a 3 x 10000 array, and | want to find out the row # of the 10,000
rows matches (if any) an arbitrary 3 x 1 array. | can do this by cycling
through each column one at a time and doing an intersection (e.g. Where(
array[0] eq database][0,*]) intersected with where(array[1] eq database[1,*]
intersected with where(array[2] eq database[2,*])

This seems like a pretty slow approach to doing this, so are there any
tricks to making this run a lot faster? I'm talking about doing this for an
image, so the overhead is going to be pretty significant if | can't do any
matrix tricks and have to look up at pixel one at a time using the above
method...

VVVVVVVVVYVYVYVYVYVYVYV

]

For a true colour image, this seems to work just fine in picking out
those pixels that match a particular R,G,B sequence, 25 for the image
| chose as a test.
file = 'Bpic.jpg’
read_jpeg,file,image
rgb =[11,12,17]
match = where(image[0,*] EQ rgb[0] AND $
image[1,*] EQ rgb[1] AND $
image[2,*] EQ rgb[2])
Is that what you're after?

Andrew

Subject: Re: Optimization help
Posted by JD Smith on Fri, 31 Mar 2006 02:03:40 GMT

View Forum Message <> Reply to Message

Page 1 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1306
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22560&goto=48158#msg_48158
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=48158
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22560&goto=48157#msg_48157
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=48157
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

On Thu, 30 Mar 2006 17:23:30 -0800, Jonathan Greenberg wrote:

| was wondering if there are any tricks to speeding up the following
database merging problem:

Say | have a 3 x 10000 array, and | want to find out the row # of the 10,000
rows matches (if any) an arbitrary 3 x 1 array. | can do this by cycling
through each column one at a time and doing an intersection (e.g. Where(
array[0] eq database][0,*]) intersected with where(array[1] eq database[1,*]
intersected with where(array[2] eq database[2,*])

This seems like a pretty slow approach to doing this, so are there any
tricks to making this run a lot faster? I'm talking about doing this for an
image, so the overhead is going to be pretty significant if | can't do any
matrix tricks and have to look up at pixel one at a time using the above
method...

VVVVVVVYVYVYVYVYVYVYV

REBIN + TOTAL along a dimension does the trick:
match_rows=where(total(database eq rebin(array,3,10000,/SAMPLE),1) eq 3.)

What we really need is for ARRAY_EQUAL to allow a DIMENSION keyword,
similar to MIN/MAX/MEDIAN/etc. This would be a boolean short-circuiting
array equal along any dimension. As soon as it finds an element along a
particular dimension that isn't equal, it aborts and moves to the next

set. This TOTAL trick is just a cheap way to do that. Anyone at RSI
listening?

You could also use MIN to accomplish the same thing:
match_rows=where(min(database eq rebin(array,3,10000,/SAMPLE),DIMENSION=1))

which just ensure the minimum along the short dimension is 1 (i.e. all
elements match). You could even use PRODUCT:

match_rows=where(product(database eq rebin(array,3,10000,/SAMPLE),1))
since for the product to be 1, all must have been 1.

If you are really concerned about speed, you should test these against
each other on your hardward/data and see which is faster. For long
integers, on my machine, the TOTAL version is actually faster by about
20%. You can gain another 5-10% or so by using the following uglier
version:

match_rows=where(total(database eq rebin(array,3,10000,/SAMPLE),1,
/IPRESERVE_TYPE) eq 3b)

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

which perform the TOTAL and comparison all in BYTES, rather than
converting to FLOAT (which is unnecessary since the maximum total here
is 3). Notice the use of /SAMPLE to slightly speedup REBIN. Omitting

it results in about a 5% hit.

By the way, for 3x10000, all of these are very fast, around 1/500 of a
second, so it shouldn't give you any trouble for interactive use.

JD

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

