Subject: XSTRETCH and Library Lessons
Posted by JD Smith on Fri, 21 Apr 2006 20:55:42 GMT

View Forum Message <> Reply to Message

XSTRETCH is pretty fun. | especially like the curve plot for

non-linear (but why not draw it for linear as well?). | downloaded

the new version, and immediately had problems: the histogram didn't
show up for me any longer, as it did in older versions. Just a gray
background. The min/max lines showed, and could be interacted with,
but no histogram.

Surely, | thought to myself, the good Dr. Fanning would not distribute

such a mal-configured tool. So I looked into a bit deeper. It turns

out, among the bread and butter COYOTE routines like FSC_COLOR and
TVIMAGE, and FSC_FILESELECT, | had 3-4 copies of each of these on my
IDL_PATH, included directly in other libraries, like PAN, ICG, CM,

etc. Presumably you have since updated those files, and a standard

load path shadowing issue (aka hame space collisions --- the wrong

routine of the same name getting called) caused XSTRETCH to break in a
most unilluminating way.

For all you library distributors out there... | think a good rule of

thumb is, if you'd like to pluck a routine from a random library, and
distribute it with your own (after getting permission of course), you

should rename it by adding a unique additional prefix, so, e.g.,
ICG_TVIMAGE, instead of plain old TVIMAGE. This saves your users from
future changes to the tool breaking your code, and saves the other

library maintainer from fielding all kinds of spurious "your code

doesn't work™ complaints that arise from simple load path shadowing.

An even better solution, in my opinion, is not to include routines
from other libraries at all, but just state in your install notes:

FOOLIB requires the COYOTE library, version X.Y or later, available
at.........

This puts a higher burden on your users to install another library,

and on yourself to make sure that future changes to that library don't
break your tools (i.e. to migrate your tools along), but the end

result is much cleaner, and bug fixes and feature additions then get
communicated back to the original library maintainer, so that everyone
benefits. The worst offenders are those that "snapshot" another
entire library and bundle it directly in their own. This severely

pollutes the name-space, and for little added benefit. Why not just
provide a pointer to the additional library?

The final solution, if you feel your users are too lazy to sort any of
this out, is just to compile a .sav file of your entire library, and

Page 1 of 8 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22650&goto=48472#msg_48472
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=48472
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

distribute that. These don't suffer name space collisions. As long

as they are loaded first, their versions of, e.g., TVIMAGE, will trump
any others, and since they have to explicitly or implicitly loaded,

the true-blue TVIMAGE would continue to load and work as expected in
sessions where your tool isn't being used.

JD

P.S. IDLWAVE can help you identify offenders. Scan a your full

library into an IDLWAVE library catalog, and then select
IDLWAVE->Routine Info->[Load Path Shadow] Check Everything. You'll
get a report on multiply defined routines, sorted in the order they

will most likely be loaded. RSI even re-defines the same routine a

few times in it's IDIR/lib routines!

Subject: Re: XSTRETCH and Library Lessons
Posted by JD Smith on Tue, 25 Apr 2006 22:29:50 GMT

View Forum Message <> Reply to Message

On Tue, 25 Apr 2006 15:05:45 +0000, Michael A. Miller wrote:

>>>> >>"JD" == JD Smith <jdsmith@as.arizona.edu> writes:
>

>> On Mon, 24 Apr 2006 19:36:29 +0000, Michael A. Miller
>> wrote:

>

>>> For our local libraries, I've had to define release tags

>>> for them. Then, every "application,"” which means "every
>>> thing that we expect to work the same way each time, gets
>>> started from a script that includes setting the IDL_PATH
>>> to include the proper release.

>

>> This is a very heavy handed approach, because it requires
>> your colleagues to use only your package in a given IDL
>> session, and not mix and match. Itis, alas, an approach
>> many people take.

V

| don't see how that is heavy handed. The IDL_PATH can handle
more than one directory at once and users are they are welcome to
add anything they like to their IDL_PATH. We regularly use
applications that use out libraries, Fannings, mpfit, textoidl

and the Juelich libraries, all in one applications.

The whole point of the IDL_PATH is to allow flexible loading, so
multiple "packages” can be used. You are right that they get
only one version of a particular routine, but that is the whole
point. If parts of a library don't change, then it doesn't

VVVVVVVYVYVYVYV

Page 2 of 8 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22650&goto=48535#msg_48535
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=48535
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

matter which version they use. If parts do change, then they
pick which behavior they want. This is no different with IDL
than with any other system, be it put together with a linker or
an interpreted language. The same sort issue comes up all the
time for libc, for python, for java, for <insert system here>,
especially around major release increment time.

VVVYVYVYV

| think we are talking about different problems. You seem to be
worrying about name space conflicts among multiple versions of your
own library lying around on disk. I'm talking about name collisions
between libraries (either because they have a real, distinct routine
with coincidentally the same file name as another's routine, or they
copied a possibly now incompatible version of that routine into their
distribution).

The problem as | see it is making the assumption that simply shuffling
the IDL_PATH to put *your* library's path(s) up front is a solution.
Yes, it allows your library to run correctly. However, if the reason

you shuffled the path in the first place was to avoid unfortunate name
space conflicts with other user-installed packages, you have just
shifted the breakage from yourself onto them. Ideally, the ordering

of a package on IDL_PATH wouldn't matter, especially since this
ordering is alphabetical in recursive additions to the path.

| guess you could just name your library AAAAAAAAAAAAAAAAAAAAAAGOODLIB
to ensure it is sorted first ;).

>> Assuming library coders kept a (quasi-)fixed calling
>> interface and backward-compatible behavior for their
>> routines (which is mostly true of most of the big

>> |ibraries), the best approach would be if:

>
> What | was presenting is how | handle the case where backward
> compatability is broken (sometimes willfully, sometimes

> unintentionally).

You seem to be attacking the "intentional multiple installed versions
of the same library" issue, which is something related but different.

>> 1. External libraries are mentioned, by version number

>> required, and the user or site has the responsibility to

>> nstall them.

>

> | think that is exactly what we do here. Would you elaborate on
> what you mean by "install,” if it doesn't mean, make sure IDL can
> find them by setting the appropriate the IDL_PATH?

Page 3 of 8 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

l.e. instead of just bundling another library directly as part of your
package, just ask the user to go to the source and install it from there.
More work for you and them, yes, but far less likely to blow-up on you.

>> 2. Everyone uses likely-to-be-unique names for their

>> routines... object programming helps here (since it's not

>> weird seeming to hide everything behind a long unique class
>> pame).

>

> Absolutely required - only gets hard-ish as multiple incompatible
> releases get promulgated, which is the case that | was talking

> about, as was the original poster (who, now that | look back, was
>

you :-)

Not actually. | guess there's a bit more subtlety involved. There's
the pro-active "my sysadmin put 3 different versions of AstroLib"
issue, which is solvable locally. Then there's the "I took the parts

of AstroLib which | wanted and put them together with my library and
distribute that to users" issue, which isn't.

>> 3. Nobody messes with IDL_PATH via shell scripts or IDL
>> scripts. Your package should work no matter where it is on
>> the path, and should not make specific assumptions about
>> where it is in the heirarchy.

How would IDL find the code then? If | don't mess with (= add

the neccessary directories to) the path, my package cannot work,
becuase IDL can't find it. If there are multiple versions of a

routine, or even just one, there must be some way for IDL to find
the code. Whether that is handled by using the built in IDL_PATH
mechanism, or some new feature that is invented to replace it, it
seems unavoidable. | must be missing something here - would you
elaborate?

VVVVYVYVYVYVYV

The *user*, and only the user, sets IDL_PATH. He may set it to

+~/idl/, or to something way more fancy, but code never gets to monkey
with it. | have seen plenty of packages that, on starting up (with a
required startup batch or via a shell script), first directly modify

IPATH to ensure they are in front. Essentially the equivalent of

cutting in line.

> Actually, I'll bet I'd always get the "blah" that | specified,
> regardless of what | wanted! If | specified the wrong version,
> |'d still get the wrong version ;-)

But at least then it would be your fault, not the fault of a library
packager ;).

Page 4 of 8 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> Note this works as well for normal procedural programming
>> as object-oriented programming. It also makes it trivial to
>> "fork" a version of a library, and re-distribute. So you

>> might have to change "Package AstroLib" to "Package

>> AstroLib-FooBar" and reference that package in your code
>> instead. Our only equivalent would be to go through and
>> change all the routine definitions and calls to routines in

>> the library from routine to foobar_routine. Not exactly

>> maintainable.

>> Sadly, IDL doesn't really offer any help like this, so it's
>> up to the community to approximate, by convention, a system
>> with some of these properties.

| see it a bit differently - IDL offers a simple method to

specify which fork | want. If | want AstroLib, | put a !path =
'/dir/AstroLib'+!path in my code. If | want AstroLib-FooBar, |

put a !path = '/dir/AstroLib-FooBar'+!path in my code. Both
AstroLib and AstroLib-FooBar contain do_this.pro and do_that.pro,
so | continue to call them without changing my code. This is

easy to do for any IDL code if | know where the codes are
installed. | don't know how to do it if | adhere to your point

3.

VVVVVVVYVYVYV

That's a solution for end users, but it doesn't solve the problem
generally, and doesn't help at all people who are distributing their

own packages, since it's completely non-portable. What if you want to
distribute a package which uses AstroLib-FooBar? Will you know where
it is on your user's machine, so you can modify the 'PATH directly

like this? Will you know what else will already exist on their IPATH?
The beauty of a real package system like | mention is it's portable.

If I, the end user, know about all the name space conflicts in my
installed pile of IDL libs, | can hand tune my IDL_PATH to ensure
that, despite the name collisions which occur, the version | want to

be called first is actually getting called. But this is an enormous
amount of work, and users just won't do it. If you end up downloading
another package FOO which bundles a few outdated routines from
AstroLib, and puts itself at the head of IPATH, | think you'd quickly
realize what | mean ;). And, despite having written a tool that helps
identify routine shadowing, | still get bitten by it far too often (e.g.

in the original XSTRETCH example).

Another way of thinking about it... how would you recommend fixing the
originally proposed XSTRETCH problem using !PATH alone? The solution has
to allow me to run XSTRETCH, and the other random code which contain
shadowing routines (by now quite obsolete and incompatible), all in the

same session.

Page 5 of 8 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

JD

Subject: Re: XSTRETCH and Library Lessons
Posted by mmiller3 on Wed, 26 Apr 2006 13:34:44 GMT

View Forum Message <> Reply to Message

>>>> > "JD" == JD Smith <jdsmith@as.arizona.edu> writes:
[much text snipped...]

> Another way of thinking about it... how would you recommend

> fixing the originally proposed XSTRETCH problem using 'PATH
> alone? The solution has to allow me to run XSTRETCH, and

> the other random code which contain shadowing routines (by

> now quite obsolete and incompatible), all in the same

> session.

Hi JD,

| see your point. My recommendation was that the IDL_PATH needs
to be set "right,” but that really boils down to "that's the only
way | know how to handle it with existing IDL."

The simplest way to handle fine tuning of paths, again with the
current IDL (and | encourage my colleagues to avoid this at all
costs!) is to explicitly .compile or .run files (not routines!)

with the full path specified. This makes code very unportable
though - and I've spent plenty of time frustrated about why my
changes don't seem to have any effect, only to find someone has
slipped an absolute path into some code somewhere.

If I had my choice, I'd go with versioned imports and flexible
name spaces, like you suggested, so | could do something like
"import AstroLib" to get the default versions of the whole
collection. Then I'd use elements of AstroLib with calls
something like x = AstroLib.calculate_x(). If | wanted Foo from
the default version, I'd have it. If | wanted Bar from another
version, I'd like to be able to add Bar to the AstroLib name
space (or replace it, if it is already there) with something like
"import AstroLib-other-version.Bar as AstroLib.Bar". Then calls
to AstroLib.Bar would not have to be changed in any code, but |
could get them from what ever version | want.

In the absence of a name space mechanism, maybe this could be
implemented by installing multiple versions of libraries in a
directory tree something like this:

Page 6 of 8 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4183
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22650&goto=48531#msg_48531
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=48531
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

IDL_lib_root -- AstroLib -+- default (link to latest/prefered version)
+- 1.0 (contains version 1.0 files)
+1.1

\- 27.0 (contains latest and greatest...)

If I adhere to the name-files-so-IDL-can-automatically-find-
and-compile-routines rule, the initial import of AstroLib can be
done with

pro install_library, lib, version=version, root=root
if n_elements(root) ne 1 then root="/local/IDL/lib/install/dir/"
if n_elements(version) eq 1 then begin
Ipath = root + lib + '/* + version "' + Ipath
endif else begin
Ipath = root + lib + ‘/default:’ + !path
endelse
end

Replacing routines with other versions, could be done with
something like

pro replace_library_routine, lib, routine, version=version, _extra=extra_keywords
current_path = Ipath

if n_elements(version) ne 1 then version="default'

install_library, lib, version, _extra=extra_keywords

resolve_routine, routine

Ipath = current_path

end

From the command line, or start up script, or where ever, | can
do
IDL> install_library, 'AstroLib’

Now all the AstroLib routines are available to me by name.
Replacing Bar with version 1.0 and Foo with my local modification
(installed in a similar tree somewhere else...), could be done

with

IDL> replace_library_routine, 'AstroLib’, 'Bar’, version='1.0'
IDL> replace_library_routine, 'AstroLib’, 'Foo’, version="mine’, $
root="/home/me/lib/IDL/AstroLib’

Later on, when | realize that my local changes are really not so
usefull, I can go back to the default version with

IDL> replace_library_routine, 'AstroLib’, 'Foo’

Page 7 of 8 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

| certainly haven't thought this out enough to see where it would
or would not work! (I'm still on my first bit of coffee for the
day :-)

Mike

Page 8 of 8 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

