Subject: Reading columns of binary data
Posted by news.verizon.net on Mon, 07 Aug 2006 17:12:16 GMT

View Forum Message <> Reply to Message

This is probably more of a feature request than a question, though
there is a chance the desired feature already exists within IDL.

A FITS binary table might plausibly consist of 500 columns and 500,000
rows of data in a fixed length binary format. To read the 32nd
column there are 2 options:

(1) Loop over the 500,000 rows, extracting the scalar value for
the 32nd column for each row, and construct the 500,000 element ouput
array

(2) Read the entire 500,000 x 500 file into memory, and extract
the 32nd column

(In practice, one probably would use a hybird method of looping over an
intermediate size buffer. Also note that an identical problem occurs
when extracting every nth pixel from an extremely large image on disk.)

| understand that the extraction of a column will never be as fast as
reading a row of data, because the bytes to be read are not contiguous.

But | am hoping that the heavy work can be done at a lower level than
the IDL syntax.

Erin Sheldon has recently written a C routine BINARY_READ linked to
IDL via a DLM to efficiently read a binary column (
http://cheopsl.uchicago.edu/idlhelp/sdssidl/umich_idl.html#C CODE).
(He also has routines ASCII_READ and ASCII_WRITE to do this for the
less urgent problem of ASCII columns.) While | might adopt this
routine, it would be nice for portability reasons if a DLM were not
necessary. Say, a new keyword SKIP to READU

IDL> a = fltarr(200)
IDL> readu, 1, a, skip = 100

to indicate to skip 100 bytes before reading consecutive elements.

It appears that MATLAB already has a function FREAD to support reading
columns of data.

--Wayne

Subject: Re: Reading columns of binary data
Posted by JD Smith on Tue, 08 Aug 2006 17:44:38 GMT

Page 1 of 6 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4775
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23105&goto=49604#msg_49604
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49604
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

View Forum Message <> Reply to Message

On Tue, 08 Aug 2006 16:57:41 +0200, Fi¢%LDY Lajos wrote:

>

> On Mon, 7 Aug 2006, JD Smith wrote:

>

>> |'d regard this as yet another example of why IDL needs a fast
>> compiled "side-loop" primitive for generic looping operations which
>> don't need the full conveniences of the interpreter loop (ability to
>> hit Control-C to interrupt, etc.). | should be able to say:

>>

>> a=fltarr(500000,/NO_ZERO)

>> =0.0

>> for_noblock i=0L,500000L-1L do begin

>> point_lun,un,i*100L

>> readu,un,f

>> ali]=f
>> endfor
>>

>> and not have it be 100x slower than the equivalent in C.

>> JD

Hi,

| mentioned assoc yesterday, so let's try again:

for i=0L,500000L-1L do a[i]=arr[25I*1]

>

>

>

>

>

> arr=assoc(un, [0.])
>

>

> it will do the point_lun/readu in one step, so it should be a little bit

> faster. But | think a faster loop here would not help much, as disk I/O
> |s the limiting factor.

If that were the case then the IDL loop and a similar C loop (offsetting
the file pointer and reading 4 bytes) should perform similarly. | haven't
done the test (and would be happy to be proven wrong), but my guess is
they wouldn't match by 1-2 orders of magnitude.

JD

Subject: Re: Reading columns of binary data
Posted by Foldy Lajos on Tue, 08 Aug 2006 18:35:00 GMT

View Forum Message <> Reply to Message

Page 2 of 6 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23105&goto=49670#msg_49670
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49670
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4102
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23105&goto=49669#msg_49669
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49669
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

On Tue, 8 Aug 2006, JD Smith wrote:

> On Tue, 08 Aug 2006 16:57:41 +0200, FOLDY Lajos wrote:

>
>>
>>
>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>
>>
>>
>>
>>
>>
>>

If

d

J

VVVVYVYVYVYVYV

OK,

On Mon, 7 Aug 2006, JD Smith wrote:

I'd regard this as yet another example of why IDL needs a fast
compiled "side-loop" primitive for generic looping operations which
don't need the full conveniences of the interpreter loop (ability to
hit Control-C to interrupt, etc.). | should be able to say:

a=fltarr(500000,/NO_ZERO)

f=0.0

for_noblock i=0L,500000L-1L do begin
point_lun,un,i*100L
readu,un,f
a[i]=f

endfor

and not have it be 100x slower than the equivalent in C.

JD

Hi,
| mentioned assoc yesterday, so let's try again:

arr=assoc(un, [0.])
for i=0L,500000L-1L do a[i]=arr[25I*i]

it will do the point_lun/readu in one step, so it should be a little bit
faster. But | think a faster loop here would not help much, as disk 1/0
is the limiting factor.

that were the case then the IDL loop and a similar C loop (offsetting

the file pointer and reading 4 bytes) should perform similarly. | haven't

one the test (and would be happy to be proven wrong), but my guess is

they wouldn't match by 1-2 orders of magnitude.

D

| have written my homework :-)

IDL:

Page

3 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

n=100000000|

openw, unit, 'test.dat’, /get_lun
writeu, unit, findgen(n)

close, unit

k=n/100I
a=fltarr(k)
b=a

openr, unit, 'test.dat’, /get_lun
f=0.
t=systime(1)
for j=01,k-1l do begin

point_lun, unit, j*400I

readu, unit, f

afj]=f

endfor
print, '‘point/read: ', systime(1)-t
close, unit

openr, unit, 'test.dat’, /get_lun
arr=assoc(unit, [0.])
t=systime(1)

for j=0I,k-11 do b[j]=arr[100I*j]
print, '‘assoc: ', systime(1)-t
close, unit

end

C (without any error checking, gcc-4.1.1 -0O3, linux 32 bit):

#include <stdio.h>
#include <time.h>
#include <sys/time.h>

int main()

{
struct timeval tval;
struct timezone tzone;
double t1, t2;
intj;
float* fp;

fp=(float*)malloc(1000000I*sizeof(float));

Page 4 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

FILE* file=fopen(‘test.dat", "r");

gettimeofday(&tval, &tzone);
tl=tval.tv_sec+1.0e-6*tval.tv_usec;

for (j=0; j<1000000I; j++)
{ fseek(file, j*400, SEEK_SET);
fread(fp+j, sizeof(float), 1, file);
}

gettimeofday(&tval, &tzone);
t2=tval.tv_sec+1.0e-6*tval.tv_usec;

printf("time: %f\n", t2-t1);

Best times:
IDL: point/read: 3.68
IDL: assoc: 3.05
C: 1.39
YMMV.

regards,
lajos

Subject: Re: Reading columns of binary data
Posted by JD Smith on Tue, 08 Aug 2006 20:15:40 GMT

View Forum Message <> Reply to Message

Best times:

IDL: point/read: 3.68
IDL: assoc: 3.05
C: 1.39

VVVVYVYVYV

Better than | thought, for sure... Wayne, maybe you don't need a DLM
after all. One minor quibble: you include memory allocation in the times
for C, but not the IDL versions. Should not change things (esp. if

you use NO_ZERO).

Thanks for your homework ;).

Page 5 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23105&goto=49662#msg_49662
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49662
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

JD

Page 6 of 6 ----

Generated from

conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

