
Subject: Reading columns of binary data
Posted by news.verizon.net on Mon, 07 Aug 2006 17:12:16 GMT
View Forum Message <> Reply to Message

This is probably more of a feature request than a question, though
there is a chance the desired feature already exists within IDL.

A FITS binary table might plausibly consist of 500 columns and 500,000
rows of data in a fixed length binary format. To read the 32nd
column there are 2 options:

 (1) Loop over the 500,000 rows, extracting the scalar value for
the 32nd column for each row, and construct the 500,000 element ouput
array
 (2) Read the entire 500,000 x 500 file into memory, and extract
the 32nd column

(In practice, one probably would use a hybird method of looping over an
intermediate size buffer. Also note that an identical problem occurs
when extracting every nth pixel from an extremely large image on disk.)

I understand that the extraction of a column will never be as fast as
reading a row of data, because the bytes to be read are not contiguous.
 But I am hoping that the heavy work can be done at a lower level than
the IDL syntax.

Erin Sheldon has recently written a C routine BINARY_READ linked to
IDL via a DLM to efficiently read a binary column (
 http://cheops1.uchicago.edu/idlhelp/sdssidl/umich_idl.html#C CODE).
(He also has routines ASCII_READ and ASCII_WRITE to do this for the
less urgent problem of ASCII columns.) While I might adopt this
routine, it would be nice for portability reasons if a DLM were not
necessary. Say, a new keyword SKIP to READU

IDL> a = fltarr(200)
IDL> readu, 1, a, skip = 100

to indicate to skip 100 bytes before reading consecutive elements.

It appears that MATLAB already has a function FREAD to support reading
columns of data.

--Wayne

Subject: Re: Reading columns of binary data
Posted by JD Smith on Tue, 08 Aug 2006 17:44:38 GMT

Page 1 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4775
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23105&goto=49604#msg_49604
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49604
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

View Forum Message <> Reply to Message

On Tue, 08 Aug 2006 16:57:41 +0200, Fï¿½LDY Lajos wrote:

>
> On Mon, 7 Aug 2006, JD Smith wrote:
>
>> I'd regard this as yet another example of why IDL needs a fast
>> compiled "side-loop" primitive for generic looping operations which
>> don't need the full conveniences of the interpreter loop (ability to
>> hit Control-C to interrupt, etc.). I should be able to say:
>>
>> a=fltarr(500000,/NO_ZERO)
>> f=0.0
>> for_noblock i=0L,500000L-1L do begin
>> point_lun,un,i*100L
>> readu,un,f
>> a[i]=f
>> endfor
>>
>> and not have it be 100x slower than the equivalent in C.
>>
>> JD
>>
>
> Hi,
>
> I mentioned assoc yesterday, so let's try again:
>
> arr=assoc(un, [0.])
> for i=0L,500000L-1L do a[i]=arr[25l*i]
>
> it will do the point_lun/readu in one step, so it should be a little bit
> faster. But I think a faster loop here would not help much, as disk I/O
> is the limiting factor.

If that were the case then the IDL loop and a similar C loop (offsetting
the file pointer and reading 4 bytes) should perform similarly. I haven't
done the test (and would be happy to be proven wrong), but my guess is
they wouldn't match by 1-2 orders of magnitude.

JD

Subject: Re: Reading columns of binary data
Posted by Foldy Lajos on Tue, 08 Aug 2006 18:35:00 GMT
View Forum Message <> Reply to Message

Page 2 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23105&goto=49670#msg_49670
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49670
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4102
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23105&goto=49669#msg_49669
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49669
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

On Tue, 8 Aug 2006, JD Smith wrote:

> On Tue, 08 Aug 2006 16:57:41 +0200, FÖLDY Lajos wrote:
>
>>
>> On Mon, 7 Aug 2006, JD Smith wrote:
>>
>>> I'd regard this as yet another example of why IDL needs a fast
>>> compiled "side-loop" primitive for generic looping operations which
>>> don't need the full conveniences of the interpreter loop (ability to
>>> hit Control-C to interrupt, etc.). I should be able to say:
>>>
>>> a=fltarr(500000,/NO_ZERO)
>>> f=0.0
>>> for_noblock i=0L,500000L-1L do begin
>>> point_lun,un,i*100L
>>> readu,un,f
>>> a[i]=f
>>> endfor
>>>
>>> and not have it be 100x slower than the equivalent in C.
>>>
>>> JD
>>>
>>
>> Hi,
>>
>> I mentioned assoc yesterday, so let's try again:
>>
>> arr=assoc(un, [0.])
>> for i=0L,500000L-1L do a[i]=arr[25l*i]
>>
>> it will do the point_lun/readu in one step, so it should be a little bit
>> faster. But I think a faster loop here would not help much, as disk I/O
>> is the limiting factor.
>
> If that were the case then the IDL loop and a similar C loop (offsetting
> the file pointer and reading 4 bytes) should perform similarly. I haven't
> done the test (and would be happy to be proven wrong), but my guess is
> they wouldn't match by 1-2 orders of magnitude.
>
> JD
>
>

OK, I have written my homework :-)

IDL:

Page 3 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

n=100000000l
openw, unit, 'test.dat', /get_lun
writeu, unit, findgen(n)
close, unit

k=n/100l
a=fltarr(k)
b=a

openr, unit, 'test.dat', /get_lun
f=0.
t=systime(1)
for j=0l,k-1l do begin
 point_lun, unit, j*400l
 readu, unit, f
 a[j]=f
 endfor
print, 'point/read: ', systime(1)-t
close, unit

openr, unit, 'test.dat', /get_lun
arr=assoc(unit, [0.])
t=systime(1)
for j=0l,k-1l do b[j]=arr[100l*j]
print, 'assoc: ', systime(1)-t
close, unit

end

C (without any error checking, gcc-4.1.1 -O3, linux 32 bit):

#include <stdio.h>
#include <time.h>
#include <sys/time.h>

int main()
{
 struct timeval tval;
 struct timezone tzone;
 double t1, t2;
 int j;
 float* fp;

 fp=(float*)malloc(1000000l*sizeof(float));

Page 4 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 FILE* file=fopen("test.dat", "r");

 gettimeofday(&tval, &tzone);
 t1=tval.tv_sec+1.0e-6*tval.tv_usec;

 for (j=0; j<1000000l; j++)
 { fseek(file, j*400, SEEK_SET);
 fread(fp+j, sizeof(float), 1, file);
 }

 gettimeofday(&tval, &tzone);
 t2=tval.tv_sec+1.0e-6*tval.tv_usec;

 printf("time: %f\n", t2-t1);
}

Best times:

 IDL: point/read: 3.68
 IDL: assoc: 3.05
 C: 1.39

YMMV.

regards,
lajos

Subject: Re: Reading columns of binary data
Posted by JD Smith on Tue, 08 Aug 2006 20:15:40 GMT
View Forum Message <> Reply to Message

>
> Best times:
>
> IDL: point/read: 3.68
> IDL: assoc: 3.05
> C: 1.39
>

Better than I thought, for sure... Wayne, maybe you don't need a DLM
after all. One minor quibble: you include memory allocation in the times
for C, but not the IDL versions. Should not change things (esp. if
you use NO_ZERO).

Thanks for your homework ;).

Page 5 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23105&goto=49662#msg_49662
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49662
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

JD

Page 6 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

