
Subject: Re: SHMMAP and structures
Posted by Peter Mason on Thu, 10 Aug 2006 23:10:04 GMT
View Forum Message <> Reply to Message

Mike Wallace wrote:
> Hi Everyone,
>
> In the documentation for SHMMAP, I ran across this following regarding
> the kind of data that can be used in SHMMAP: "The array can be of any
> type except pointer, object reference, or string. (Structure types are
> allowed as long as they do not contain any pointers, object
> references, or strings.)"
>
> This is the only place where I read of using a structure with SHMMAP.
> Has anyone ever mapped structures before? If so, can you mix and
> match the data types within the structure or are you restricted to
> using only one data type in the structure? Also, how is the data
> laid out in memory if you write out a structure this way? (I'm
> interested in the data layout because a non-IDL program needs to use
> the memory space as well.)
>
> I know that all these questions are ones that I could answer myself
> if I had enough time to play with the commands, but I don't have
> enough time at the moment to do a thorough investigation, but I was
> hoping that someone out there may have worked with this before. TIA,
>
> -Mike

I haven't actually used SHMMAP but some time back I wrote something similar
myself so I think I know how it works.

As long as the structure doesn't contain any string, pointer or objref
members, it is a complete block of data. It stays the same size for all
its life. (Well, all IDL structures do that.) All of the members have
their storage space right there in the structure. As far as reading and
writing structures is concerned, there is no control information buried in
amongst the data. The knowledge of what datatype each member is resides
elsewhere. Even array members have no control info in the structure data
block. They just have room for the declared number of elements (of the
declared datatype).

If you write out an array of structures using IDL's SHMMAP then you can read
it from an external application quite easily. You just need to define the
structure properly in the external app. This is easy in C as there's
mostly a C datatype corresponding to each IDL datatype. There are some
things to be wary of, of course. With 32-bit windows, you might have to go
digging a bit to find the 64-bit integer types but they're there. If you

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1501
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23142&goto=49712#msg_49712
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49712
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

aren't using 32-bit Windows then you have to be careful with your 32-bit and
16-bit integers. If you have a choice of what "float" and "double" mean
then be sure to pick the 4-byte and 8-byte IEEE formats. C doesn't have
complex numbers but they are just FLTARR(2)s and DBLARR(2)s.

One thing you have to pay attention to is padding bytes. Each member in an
IDL structure can have padding bytes before it, in order to align it in
memory. There might be padding bytes at the end of the structure as well,
to align the first member of the next structure in an array. (Even if you
have just one structure element, IDL sets things up for an array.) Unlike
other IDL I/O routines, SHMMAP doesn't apply any smarts to its data and
these padding bytes will go along for the ride.
I think I read somewhere that IDL uses the default padding rules of the host
platform. I've been using Win32 exclusively for many years so I don't know
about other platforms any more, but on Win32 the padding rules seem quite
simple. The start of the structure can be assumed to be aligned on at leat
an 8-byte boundary and then each structure member gets 0 or more padding
bytes to align it to its byte count. So a 32-byte integer or
single-precision float could be preceded by up to 3 padding bytes, for
example. Whatever it takes to have it on a 4-byte boundary. As far as
arrays are concerned, it's just the datatype that matters to padding.

The reason that SHMMAP doesn't tolerate string, pointer and objref structure
members is because these types do not have their data within the structure's
data block. A string just has a descriptor in the data block. The guts
of it - the string itself - resides elsewhere on a heap somewhere. A
pointer or objref just has an index in the data block. This index
ultimately refers to the actual data - again, elsewhere on a heap somewhere.
If you were allowed to do SHMMAP I/O with structure members like these then
the best that you could possibly hope for is that your IDL program would
crash. You'd be reading in string descriptors and internal indexes that
referred to arbitrary locations in memory or things that didn't exist (if
you were lucky).

HTH
Peter Mason

Subject: Re: SHMMAP and structures
Posted by Mike Wallace on Tue, 15 Aug 2006 15:37:59 GMT
View Forum Message <> Reply to Message

Thanks for you detailed response. It has been most helpful.

-Mike

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5749
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23142&goto=49759#msg_49759
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49759
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

