
Subject: Re: slow processing of my k-nearest neighour code
Posted by humphreymurray on Mon, 14 Aug 2006 13:50:56 GMT
View Forum Message <> Reply to Message

Oh yes, I should have explained it in better detail.

I am trying to classify pixels within an image into various classes(or
regions) using a k-nearest neighbour classifier
(http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm). It is
this classifier that I am trying to implement.

The imagery that I am dealing with consists of any number of bands.
These bands may be the standard RGB bands, or they may be the result of
some other calculation. Two different sets of pixels need to be passed
into this function. The first set of these is the training data. This
is a collection of pixels of which the regions that they come from is
known. This information originates from a 2d image, however, I have
converted it into a linear vector. I have then used the 2nd dimension
of the array to specify what band the pixels are from.

There is also a 1d vector that is passed in that contains the regions
that the known pixels belong to. I have just used integers to identify
these.

The final input data is what I've called the testing data. This is a
collection of pixels of which we don't know what region they belong to.
 The procedure I have written is there to calculate what region they
belong to. This is done by plotting these pixels in feature space.
For example, if there are 2 bands in the image, then one of these bands
could be plotted along the x axis, and the other along the y. Then the
distance between the pixel in question, and every training pixel is
calculated. The k closest pixels are then looked at the see which
region is the most common among those neighbouring pixels. This region
is the result for that pixel.

So in my code which I posted previously. I am looping through all of
the pixels to be classified, and then for each of these pixels, I am
computing the distances, etc. The code that I have written works. I
have tested the results with values that I calculated by hand. However
it runs extremely slow. One reason for this is that if I am trying to
classify every pixel within a 256x256 pixel image, then the other loop
of my code has to run about 65,500 times. When I add a nested loop,
this slows down my code even more. Any ideas as to make it more
efficient would be great, thanks.

Humphrey

Page 1 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5841
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23159&goto=49787#msg_49787
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49787
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

On 8/14/06, Bakim wrote:

 Hello!!

 Can you explain more on your program...what is the input data...
 whether you input an array or read from a image first..I would
 appreciate if you explian more on your algorithms used for
 classification.

 Regard's

humphreymurray@gmail.com wrote:
> Hi,
>
> I am trying to implement a k-nearest neighbout classifier in IDL. The
> problem is that it's running really, really slow. After reading
> through much of the IDL documentation, I have managed to increase it's
> processing speed significantly, by reordering my arrays to make better
> use of contiguous memory. However it still runs quite slow. Can
> anybody help me make this more efficient?
>
> Cheers, Humphrey Murray
>
>
> ; knn_classifer
> ; This code preforms a k-nearest neighbour classification.
> ; - training_data :: A 2d array containing the training data [Image
> data, different bands]
> ; - training_classes :: A 1d array containing the classes that
> represent the data [class value (integer)]
> ; - testing_data: A 2d array with the same dimensions as training_data,
> which contains the data to be classified
> ; - k: The number of nearest neighbours to look at
> ; - result: The result of the classifier, a 1d array.
>
> pro knn_classifier, training_data, training_classes, testing_data, k,
> result
>
> ; Find out the sizes of the input arrays
> testing_data_sizes = size(testing_data)
> training_data_sizes = size(training_data)
>
> ; Check to make sure that the input arrays are of the correct
> dimensions, and contain the same number of attributes
> IF training_data_sizes[0] NE 2 THEN Message, 'The training data
> must be an array of 2 dimensions.'
> IF testing_data_sizes[0] NE 2 THEN Message, 'The testing data must

Page 2 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> be an array of 2 dimensions.'
> IF testing_data_sizes[2] NE training_data_sizes[2] THEN Message,
> 'The training and testing data must have the same number of attributes
> (i.e., the arrays need to be the same size in their first dimension)'
>
> ; Find out how many elements there are to test
> num_testing_elements = testing_data_sizes[1]
> num_training_elements = training_data_sizes[1]
>
> ; Find out the number of attributes
> num_attributes = training_data_sizes[2]
>
> ; A temporary storage spot
> squared = make_array(num_training_elements, num_attributes)
> euclidean = make_array(num_training_elements)
>
> ; Create an array for storing the results
> result = make_array(num_testing_elements, /INTEGER)
> temp_testing_data = make_array(num_training_elements,
> num_attributes)
>
> ; calculate the distances for each training item
> for i = long(0), num_testing_elements - 1 do begin
>
> ; Calculate the squared distance for each attribute.
> squared = make_array(num_training_elements, num_attributes)
> for attrib = 0, num_attributes-1 do begin
> squared[*,attrib] = (testing_data[i, attrib] -
> training_data[*,attrib])^2
> endfor
>
> ; Calculate the sums of the squared differences accross the
> attributes
> euclidean = sqrt(total(squared, 2))
>
> ; Calculate the distances and sort the indexs of these
> sorted_indexs = sort(euclidean)
>
> ; Create an array that contains the classes of the items with
> the k
> k_closest_classes = training_classes[sorted_indexs[0:k-1]]
>
> ; Store the mode (classes with the highest frequency)
> result[i] = mode(k_closest_classes)
>
> endfor
>
> end

Page 3 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: slow processing of my k-nearest neighour code
Posted by btt on Mon, 14 Aug 2006 14:11:30 GMT
View Forum Message <> Reply to Message

humphreymurray@gmail.com wrote:

>> ; Calculate the squared distance for each attribute.
>> squared = make_array(num_training_elements, num_attributes)
>> for attrib = 0, num_attributes-1 do begin
>> squared[*,attrib] = (testing_data[i, attrib] -
>> training_data[*,attrib])^2
>> endfor
>>

Hi,

You might try replacing the above for inner-loop with the following

	squared = (testing_data - training_data)^2

Since IDL is array saavy it will perform the operation element by
element for you quite quickly (as well as make the "squared" array for you).

You might be able to eliminate the outer-loop, too, but I am less sure
of that. Take a peek at the for-loop bible at

http://www.dfanning.com/tips/forloops.html

Good luck,
Ben

Subject: Re: slow processing of my k-nearest neighour code
Posted by Karl Schultz on Mon, 14 Aug 2006 15:08:38 GMT
View Forum Message <> Reply to Message

On Mon, 14 Aug 2006 10:11:30 -0400, Ben Tupper wrote:

> humphreymurray@gmail.com wrote:
>
>>> ; Calculate the squared distance for each attribute.
>>> squared = make_array(num_training_elements, num_attributes)
>>> for attrib = 0, num_attributes-1 do begin
>>> squared[*,attrib] = (testing_data[i, attrib] -
>>> training_data[*,attrib])^2
>>> endfor
>>>
>

Page 4 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3738
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23159&goto=49786#msg_49786
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49786
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3264
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23159&goto=49785#msg_49785
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49785
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> Hi,
>
> You might try replacing the above for inner-loop with the following
>
> 	squared = (testing_data - training_data)^2
>
> Since IDL is array saavy it will perform the operation element by
> element for you quite quickly (as well as make the "squared" array for you).
>
> You might be able to eliminate the outer-loop, too, but I am less sure
> of that. Take a peek at the for-loop bible at
>
> http://www.dfanning.com/tips/forloops.html
>
> Good luck,
> Ben

The above will help a great deal. But if the OP is going to move to
larger data and/or it gets really important to lower the execution time,
he may want to implement a compiled-code DLM. There's a package out there
called ANN (Approximate Nearest Neighbor) that computes the k-nearest
neighbors using either an exact calculation or a faster approximate
calculation.

I needed this once as part of a surface reconstruction project and wrote a
really narrow C DLM interface wrapper that exposed the ANN features I
needed. This isn't that hard to do, but you do need to know how to code
IDL DLM's. ANN is provided in source code form and is pretty easy to work
with. And it does the job nicely.

Karl

Subject: Re: slow processing of my k-nearest neighour code
Posted by news.verizon.net on Mon, 14 Aug 2006 15:30:50 GMT
View Forum Message <> Reply to Message

Karl Schultz wrote:
> On Mon, 14 Aug 2006 10:11:30 -0400, Ben Tupper wrote:
>
>> humphreymurray@gmail.com wrote:
>>
>>>> ; Calculate the squared distance for each attribute.
>>>> squared = make_array(num_training_elements, num_attributes)
>>>> for attrib = 0, num_attributes-1 do begin
>>>> squared[*,attrib] = (testing_data[i, attrib] -
>>>> training_data[*,attrib])^2
>>>> endfor

Page 5 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4775
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23159&goto=49784#msg_49784
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49784
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>>
>>
>> Hi,
>>
>> You might try replacing the above for inner-loop with the following
>>
>> 	squared = (testing_data - training_data)^2
>>

I don't think this works here because you lose the dependence on the i
index -- the value of "squared" will differ for each value of "i".
But another one of David Fanning's pages could help, see
http://www.dfanning.com/code_tips/asterisk.html
and rewrite the assignment as

 squared[0,attrib] = (testing_data[i, attrib] -
training_data[*,attrib])^2

--Wayne

Subject: Re: slow processing of my k-nearest neighour code
Posted by btt on Mon, 14 Aug 2006 16:01:04 GMT
View Forum Message <> Reply to Message

Wayne Landsman wrote:
> Karl Schultz wrote:
>> On Mon, 14 Aug 2006 10:11:30 -0400, Ben Tupper wrote:
>>
>>> humphreymurray@gmail.com wrote:
>>>
>>>> > ; Calculate the squared distance for each attribute.
>>>> > squared = make_array(num_training_elements, num_attributes)
>>>> > for attrib = 0, num_attributes-1 do begin
>>>> > squared[*,attrib] = (testing_data[i, attrib] -
>>>> > training_data[*,attrib])^2
>>>> > endfor
>>>> >
>>> Hi,
>>>
>>> You might try replacing the above for inner-loop with the following
>>>
>>> 	squared = (testing_data - training_data)^2
>>>
>
> I don't think this works here because you lose the dependence on the i
> index -- the value of "squared" will differ for each value of "i".
> But another one of David Fanning's pages could help, see

Page 6 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3738
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23159&goto=49783#msg_49783
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49783
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> http://www.dfanning.com/code_tips/asterisk.html
> and rewrite the assignment as
>
> squared[0,attrib] = (testing_data[i, attrib] -
> training_data[*,attrib])^2
>

Ah! Got it. I didn't catch that squared was measuring the distance
from each test point to every training point for the specified
attribute. Duh! I guess that's the whole point!

Sorry for the misdirect.

Cheers,
Ben

Subject: Re: slow processing of my k-nearest neighour code
Posted by James Kuyper on Mon, 14 Aug 2006 20:50:16 GMT
View Forum Message <> Reply to Message

humphreymurray@gmail.com wrote:
> Hi,
>
> I am trying to implement a k-nearest neighbout classifier in IDL. The
> problem is that it's running really, really slow. After reading
> through much of the IDL documentation, I have managed to increase it's
> processing speed significantly, by reordering my arrays to make better
> use of contiguous memory. However it still runs quite slow. Can
> anybody help me make this more efficient?
>
> Cheers, Humphrey Murray
>
>
> ; knn_classifer
> ; This code preforms a k-nearest neighbour classification.
> ; - training_data :: A 2d array containing the training data [Image
> data, different bands]
> ; - training_classes :: A 1d array containing the classes that
> represent the data [class value (integer)]
> ; - testing_data: A 2d array with the same dimensions as training_data,
> which contains the data to be classified
> ; - k: The number of nearest neighbours to look at
> ; - result: The result of the classifier, a 1d array.
>
> pro knn_classifier, training_data, training_classes, testing_data, k,
> result
>

Page 7 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3483
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23159&goto=49776#msg_49776
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49776
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> ; Find out the sizes of the input arrays
> testing_data_sizes = size(testing_data)
> training_data_sizes = size(training_data)
>
> ; Check to make sure that the input arrays are of the correct
> dimensions, and contain the same number of attributes
> IF training_data_sizes[0] NE 2 THEN Message, 'The training data
> must be an array of 2 dimensions.'
> IF testing_data_sizes[0] NE 2 THEN Message, 'The testing data must
> be an array of 2 dimensions.'
> IF testing_data_sizes[2] NE training_data_sizes[2] THEN Message,
> 'The training and testing data must have the same number of attributes
> (i.e., the arrays need to be the same size in their first dimension)'
>
> ; Find out how many elements there are to test
> num_testing_elements = testing_data_sizes[1]
> num_training_elements = training_data_sizes[1]
>
> ; Find out the number of attributes
> num_attributes = training_data_sizes[2]
>
> ; A temporary storage spot
> squared = make_array(num_training_elements, num_attributes)
> euclidean = make_array(num_training_elements)
>
> ; Create an array for storing the results
> result = make_array(num_testing_elements, /INTEGER)
> temp_testing_data = make_array(num_training_elements,
> num_attributes)
>
> ; calculate the distances for each training item
> for i = long(0), num_testing_elements - 1 do begin
>
> ; Calculate the squared distance for each attribute.
> squared = make_array(num_training_elements, num_attributes)
> for attrib = 0, num_attributes-1 do begin
> squared[*,attrib] = (testing_data[i, attrib] -
> training_data[*,attrib])^2
> endfor
>
> ; Calculate the sums of the squared differences accross the
> attributes
> euclidean = sqrt(total(squared, 2))

You can move a large portion of the above code outside both loops,
simplifying and presumeably speeding up your program:

 ; A temporary storage spot

Page 8 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 training_duplicates = REBIN(TRANSPOSE(training_data), $
 num_attributes, num_training_elements, num_testing_elements)
 testing_duplicates = TRANSPOSE(REBIN(TRANSPOSE(testing_data), $
 num_attributes, num_testing_elements, num_training_elements),
[0,2,1])
 euclidean = sqrt(TOTAL((training_duplicates-testing_duplicates)^2,
1))

However, I can't figure out how to remove the sort from the loop.
Therefore, you'll still need:

> ; Calculate the distances and sort the indexs of these
> sorted_indexs = sort(euclidean)

With one minor change:

 sorted_indexs = sort(euclidean[*,i])

> ; Create an array that contains the classes of the items with
> the k
> k_closest_classes = training_classes[sorted_indexs[0:k-1]]
>
> ; Store the mode (classes with the highest frequency)
> result[i] = mode(k_closest_classes)
>
> endfor
>
> end

I hope that helps.

Subject: Re: slow processing of my k-nearest neighour code
Posted by JD Smith on Mon, 14 Aug 2006 21:39:18 GMT
View Forum Message <> Reply to Message

On Mon, 14 Aug 2006 10:11:30 -0400, Ben Tupper wrote:

> humphreymurray@gmail.com wrote:
>
>>> ; Calculate the squared distance for each attribute.
>>> squared = make_array(num_training_elements, num_attributes)
>>> for attrib = 0, num_attributes-1 do begin
>>> squared[*,attrib] = (testing_data[i, attrib] -
>>> training_data[*,attrib])^2
>>> endfor
>>>
>

Page 9 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23159&goto=49774#msg_49774
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49774
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> Hi,
>
> You might try replacing the above for inner-loop with the following
>
> 	squared = (testing_data - training_data)^2
>
> Since IDL is array saavy it will perform the operation element by
> element for you quite quickly (as well as make the "squared" array for you).
>
> You might be able to eliminate the outer-loop, too, but I am less sure
> of that. Take a peek at the for-loop bible at
>
> http://www.dfanning.com/tips/forloops.html

More of a diatribe than a bible ;).

I hope you meant:

http://www.dfanning.com/code_tips/slowloops.html

where the nearest-neighbor problem is actually discussed.

JD

Subject: Re: slow processing of my k-nearest neighour code
Posted by humphreymurray on Tue, 15 Aug 2006 02:07:08 GMT
View Forum Message <> Reply to Message

Cheers, just by getting rid of the * increased my speed by a factor of
1.4 :-)

Humphrey

Subject: Re: slow processing of my k-nearest neighour code
Posted by humphreymurray on Tue, 15 Aug 2006 02:17:44 GMT
View Forum Message <> Reply to Message

Wow, that's a great idea to remove most of the code from the loops.
The only problem is that the code doesn't run on data of any usable
size. I get a "Unable to allocate memory: to make array" error on this
line of code:

training_duplicates = REBIN(TRANSPOSE(training_data), $
 num_attributes, num_training_elements, num_testing_elements)

Page 10 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5841
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23159&goto=49769#msg_49769
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49769
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5841
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23159&goto=49768#msg_49768
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49768
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

This code works fine with really small data, but when I'm trying to
classify a 256x256 pixel image, it is trying to create an array of
dimensions: [15, 400, 65536]. According to my math, this would be
about 390 million elements, and assuming that each element takes 1 byte
of memory, it would use 390mb of ram. My machine at uni only has 512mb
of ram, so I will try this code at home tonight, where I have 1gb of
ram.

Would the way to fix this problem be to split the number of training
pixels up, and process them in small groups? For example, analyse a
row of pixels at a time?

Humphrey

kuyper@wizard.net wrote:
> humphreymurray@gmail.com wrote:
>> Hi,
>>
>> I am trying to implement a k-nearest neighbout classifier in IDL. The
>> problem is that it's running really, really slow. After reading
>> through much of the IDL documentation, I have managed to increase it's
>> processing speed significantly, by reordering my arrays to make better
>> use of contiguous memory. However it still runs quite slow. Can
>> anybody help me make this more efficient?
>>
>> Cheers, Humphrey Murray
>>
>>
>> ; knn_classifer
>> ; This code preforms a k-nearest neighbour classification.
>> ; - training_data :: A 2d array containing the training data [Image
>> data, different bands]
>> ; - training_classes :: A 1d array containing the classes that
>> represent the data [class value (integer)]
>> ; - testing_data: A 2d array with the same dimensions as training_data,
>> which contains the data to be classified
>> ; - k: The number of nearest neighbours to look at
>> ; - result: The result of the classifier, a 1d array.
>>
>> pro knn_classifier, training_data, training_classes, testing_data, k,
>> result
>>
>> ; Find out the sizes of the input arrays
>> testing_data_sizes = size(testing_data)
>> training_data_sizes = size(training_data)
>>
>> ; Check to make sure that the input arrays are of the correct

Page 11 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> dimensions, and contain the same number of attributes
>> IF training_data_sizes[0] NE 2 THEN Message, 'The training data
>> must be an array of 2 dimensions.'
>> IF testing_data_sizes[0] NE 2 THEN Message, 'The testing data must
>> be an array of 2 dimensions.'
>> IF testing_data_sizes[2] NE training_data_sizes[2] THEN Message,
>> 'The training and testing data must have the same number of attributes
>> (i.e., the arrays need to be the same size in their first dimension)'
>>
>> ; Find out how many elements there are to test
>> num_testing_elements = testing_data_sizes[1]
>> num_training_elements = training_data_sizes[1]
>>
>> ; Find out the number of attributes
>> num_attributes = training_data_sizes[2]
>>
>> ; A temporary storage spot
>> squared = make_array(num_training_elements, num_attributes)
>> euclidean = make_array(num_training_elements)
>>
>> ; Create an array for storing the results
>> result = make_array(num_testing_elements, /INTEGER)
>> temp_testing_data = make_array(num_training_elements,
>> num_attributes)
>>
>> ; calculate the distances for each training item
>> for i = long(0), num_testing_elements - 1 do begin
>>
>> ; Calculate the squared distance for each attribute.
>> squared = make_array(num_training_elements, num_attributes)
>> for attrib = 0, num_attributes-1 do begin
>> squared[*,attrib] = (testing_data[i, attrib] -
>> training_data[*,attrib])^2
>> endfor
>>
>> ; Calculate the sums of the squared differences accross the
>> attributes
>> euclidean = sqrt(total(squared, 2))
>
> You can move a large portion of the above code outside both loops,
> simplifying and presumeably speeding up your program:
>
> ; A temporary storage spot
> training_duplicates = REBIN(TRANSPOSE(training_data), $
> num_attributes, num_training_elements, num_testing_elements)
> testing_duplicates = TRANSPOSE(REBIN(TRANSPOSE(testing_data), $
> num_attributes, num_testing_elements, num_training_elements),
> [0,2,1])

Page 12 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> euclidean = sqrt(TOTAL((training_duplicates-testing_duplicates)^2,
> 1))
>
> However, I can't figure out how to remove the sort from the loop.
> Therefore, you'll still need:
>
>> ; Calculate the distances and sort the indexs of these
>> sorted_indexs = sort(euclidean)
>
> With one minor change:
>
> sorted_indexs = sort(euclidean[*,i])
>
>> ; Create an array that contains the classes of the items with
>> the k
>> k_closest_classes = training_classes[sorted_indexs[0:k-1]]
>>
>> ; Store the mode (classes with the highest frequency)
>> result[i] = mode(k_closest_classes)
>>
>> endfor
>>
>> end
>
> I hope that helps.

Subject: Re: slow processing of my k-nearest neighour code
Posted by James Kuyper on Tue, 15 Aug 2006 15:14:14 GMT
View Forum Message <> Reply to Message

humphreymurray@gmail.com wrote:
> Wow, that's a great idea to remove most of the code from the loops.
> The only problem is that the code doesn't run on data of any usable
> size. I get a "Unable to allocate memory: to make array" error on this
> line of code:
>
> training_duplicates = REBIN(TRANSPOSE(training_data), $
> num_attributes, num_training_elements, num_testing_elements)
>
> This code works fine with really small data, but when I'm trying to
> classify a 256x256 pixel image, it is trying to create an array of
> dimensions: [15, 400, 65536]. According to my math, this would be
> about 390 million elements, and assuming that each element takes 1 byte
> of memory, it would use 390mb of ram. My machine at uni only has 512mb
> of ram, so I will try this code at home tonight, where I have 1gb of
> ram.
>

Page 13 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3483
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23159&goto=49760#msg_49760
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49760
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> Would the way to fix this problem be to split the number of training
> pixels up, and process them in small groups? For example, analyse a
> row of pixels at a time?

Yes, one of the key limitations of this technique is that it uses extra
memory to achieve faster processing speeds (at least, it should process
faster: I'd recommend doing some performance testing with your actual
data, to make sure). Breaking up the full test data set into smaller
sub-sets is exactly the right way to deal with this problem. I would
have mentioned that if I'd realized that you were working with arrays
that were big enough for that to be a problem.

Page 14 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

