
Subject: IDLVM and retall
Posted by JD Smith on Mon, 04 Sep 2006 21:07:44 GMT
View Forum Message <> Reply to Message

I have a large widget program which runs (optionally) under the IDLVM.
Around IDL version 6.0, when the VM was introduced, there was an
inconsistency in how non-blocking widgets were dealt with in the VM
vs. a normal IDL session, which was fixed in IDL 6.1:

 Beginning with IDL 6.1, the XMANAGER procedure honors the value of
 the NO_BLOCK keyword in Runtime and Virtual Machine modes.

 Because XMANAGER did not honor the NO_BLOCK keyword in previous
 releases, widget applications that worked properly (that is, not
 blocking) when run in a licensed full version of IDL behaved
 differently when run in Runtime or Virtual Machine mode. This
 difference in behavior has been removed; widget applications should
 behave identically (with regard to blocking behavior) in all IDL
 licensing modes.

 Other differences between IDL's Virtual Machine mode and full
 licensed mode, such as the fact that programs that call the IDL
 EXECUTE function will not run in the IDL Virtual Machine, are still
 in effect. If you have modified your widget application to work
 around the old blocking behavior by removing the NO_BLOCK keyword
 from calls to XMANAGER or by substituting the JUST_REG keyword, you
 may need to reinsert the NO_BLOCK keyword to achieve the desired
 behavior.

My program has an error catching system that differentiates between
two modes: running with a GUI, or running "lights-out" as a script.
In the former case, the error is caught, displayed for the user with
DIALOG_MESSAGE, and the RETALL command is then issued to return all
the way back to the active command line, letting the program continue
to run. When running as a script, instead MESSAGE is called, and the
error halts the program.

What I have just discovered, to my dismay, is that RETALL completely
closes down an IDLVM session, rather than returning to its
"non-blocking" widget event processing shell, as the above 6.1 update
note would imply.

Here's an example

;;; file test_vm.pro
pro test_vm_event, ev
 a=dialog_message('Testing RETALL',/ERROR)
 retall

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23266&goto=50044#msg_50044
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=50044
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 return
end

pro test_vm
 b=widget_base(/ROW)
 but=widget_button(b,VALUE='Do It!')
 widget_control, b,/realize
 XManager,'test_vm',b,/NO_BLOCK
 return
end

Run TEST_VM in a fresh IDL session, and you'll see a button. Click
it, get an error message 'Testing RETALL', but the tiny app will
continue to run (the desired behavior).

Now compile it to a .sav file:

IDL> save,FILE='test_vm.sav',/ROUTINES

quit IDL, and then:

% idl -vm=test_vm.sav

You'll see the same button. Click it, get the 'Testing RETALL'
message, but notice that now when the message is dismissed and RETALL
is called, the entire IDLVM session is shut down! I'm not sure why
this is the case, but I need a way to work around it. Since there are
many simultaneous event components all injecting events into the
program suite, there is no convenient place to put a top level CATCH.
I was relying on the background event processing inside of IDL to
continue to run, i.e. to serve as an absolute top-level catch, but it
doesn't do so in the VM.

Suggestions appreciated.

JD

Subject: Re: IDLVM and retall
Posted by JD Smith on Fri, 08 Sep 2006 17:10:34 GMT
View Forum Message <> Reply to Message

On Fri, 08 Sep 2006 10:48:43 -0600, David Fanning wrote:

> Does your ERROR method provide a way of getting a traceback?
> That was my biggest problem with error methods. Sure, I could
> record and report the error, I just couldn't figure out where

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23266&goto=50140#msg_50140
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=50140
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> it was to fix the darn thing!!

I have a "debugging" switch in a menu I can turn on, and then instead
of just trapping and showing errors and unwinding the call stack, it
will halt at the error position (which IDLWAVE immediately highlights,
and lets you wander up and down the call stack), giving a traceback.

Only explicit calls to Error signal an error using this system. Other
braindead things (e.g. a[-1]=4) will cause a traditional halting
error, unless you go out of your way to trap it using CATCH. So
really the ERROR method is for convenient error reporting and
(potentially) recovering, not for automatic catching of all
conceivable errors (though it can be used that way).

JD

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

