Subject: Re: border around draw widget
Posted by Michael Galloy on Wed, 27 Sep 2006 14:10:33 GMT

View Forum Message <> Reply to Message

Laurens wrote:

> | have a couple of draw widgets displaying various gamma-scans. Now the
> user has to select two of them by clicking on them; done.

> But now | want to let the user know where he clicked, so is it possible

> to draw some sort of red border of a few pix around the clicked

> draw-widget? | know they have a frame property, but that's just too thin

> and doesn't attract attention...

What about some polylines on the outside edge of the draw widget? Direct
graphics or object graphics?

Mike

www.michaelgalloy.com

Subject: Re: border around draw widget
Posted by Laurens on Wed, 27 Sep 2006 14:28:38 GMT

View Forum Message <> Reply to Message

Michael Galloy wrote:

> Laurens wrote:

>> | have a couple of draw widgets displaying various gamma-scans. Now
>> the user has to select two of them by clicking on them; done.

>> But now | want to let the user know where he clicked, so is it

>> possible to draw some sort of red border of a few pix around the

>> clicked draw-widget? | know they have a frame property, but that's

>> just too thin and doesn't attract attention...

What about some polylines on the outside edge of the draw widget? Direct
graphics or object graphics?

Mike

www.michaelgalloy.com

Yeah but with 14 draw widgets on screen, isn't that a bit of a nasty
solution?

Subject: Re: border around draw widget
Posted by Michael Galloy on Wed, 27 Sep 2006 14:52:34 GMT

View Forum Message <> Reply to Message

Page 1 of 18 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5698
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23382&goto=50379#msg_50379
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=50379
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5737
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23382&goto=50378#msg_50378
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=50378
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5698
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23382&goto=50377#msg_50377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=50377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Laurens wrote:

> Michael Galloy wrote:

>> Laurens wrote:

>>> | have a couple of draw widgets displaying various gamma-scans. Now
>>> the user has to select two of them by clicking on them; done.

>>> But now | want to let the user know where he clicked, so is it

>>> possible to draw some sort of red border of a few pix around the
>>> clicked draw-widget? | know they have a frame property, but that's
>>> just too thin and doesn't attract attention...

>>

>> What about some polylines on the outside edge of the draw widget?
>> Direct graphics or object graphics?

>>

>> Mike

>> -

>> www.michaelgalloy.com

>

> Yeah but with 14 draw widgets on screen, isn't that a bit of a nasty

> solution?

It depends. If you make an object representing a draw widget, then it's
just a matter of calling odraw->select and odraw->unselect (once you
figure out what goes in those methods).

Mike

www.michaelgalloy.com

Subject: Re: border around draw widget
Posted by Laurens on Wed, 27 Sep 2006 15:02:52 GMT

View Forum Message <> Reply to Message

Michael Galloy wrote:

> Laurens wrote:

>> Michael Galloy wrote:

>>> Laurens wrote:

>>>> | have a couple of draw widgets displaying various gamma-scans. Now
>>>> the user has to select two of them by clicking on them; done.

>>>> But now | want to let the user know where he clicked, so is it

>>>> possible to draw some sort of red border of a few pix around the
>>>> clicked draw-widget? | know they have a frame property, but that's
>>>> just too thin and doesn't attract attention...

>>>

>>> What about some polylines on the outside edge of the draw widget?
>>> Direct graphics or object graphics?

>>>

>>> Mike

Page 2 of 18 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5737
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23382&goto=50376#msg_50376
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=50376
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> -
>>> www.michaelgalloy.com

>>

>> Yeah but with 14 draw widgets on screen, isn't that a bit of a nasty
>> solution?

It depends. If you make an object representing a draw widget, then it's
just a matter of calling odraw->select and odraw->unselect (once you
figure out what goes in those methods).

Mike

www.michaelgalloy.com

VVVVYVYVYVYV

| make my draw widgets simply by drawing them in the gui and link an
event to it; should that be done in another way?

Subject: Re: border around draw widget
Posted by David Fanning on Wed, 27 Sep 2006 16:47:01 GMT

View Forum Message <> Reply to Message

Laurens writes:

> | make my draw widgets simply by drawing them in the gui and link an
> event to it; should that be done in another way?

OF COURSE it should be done another way. The difficulty
is in getting ITTVIS to realize it. :-)

Cheers,
David
David Fanning, Ph.D.

Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: border around draw widget
Posted by Laurens on Wed, 27 Sep 2006 17:31:29 GMT

View Forum Message <> Reply to Message

David Fanning wrote:
> Laurens writes:
>

>> | make my draw widgets simply by drawing them in the gui and link an

Page 3 of 18 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23382&goto=50373#msg_50373
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=50373
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5737
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23382&goto=50371#msg_50371
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=50371
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> event to it; should that be done in another way?

>
> OF COURSE it should be done another way. The difficulty
> s in getting ITTVIS to realize it. :-)

>

> Cheers,

>

> David

lol.... is it an option to make one rectangular widget and, depending on
the selected draw-widget, change position of that rectangular everytime
they click on a draw-widget? Or is that even nastier? hehe...

Subject: Re: border around draw widget
Posted by JD Smith on Wed, 27 Sep 2006 18:06:38 GMT

View Forum Message <> Reply to Message

On Wed, 27 Sep 2006 15:42:43 +0200, Laurens wrote:
Hi,

| have a couple of draw widgets displaying various gamma-scans. Now the
user has to select two of them by clicking on them; done.

But now | want to let the user know where he clicked, so is it possible

to draw some sort of red border of a few pix around the clicked
draw-widget? | know they have a frame property, but that's just too thin
and doesn't attract attention...

V VVVVYVYVYV

You could make the frame thicker. Something like:

IDL> b=widget_base(/ROW)

IDL> t=widget_draw(b,xsize=200,ysize=200,FRAME=10)

IDL> b2=widget_base(b,xsize=200,ysize=200,xpad=10,ypad=10,/COLUMN)
IDL> t2=widget_draw(b2,xsize=200,ysize=200)

IDL> widget_control, b,/realize

Unfortunately with this setup, you'll have to kill and re-create

everything whenever the user selects a new draw widget (since FRAME's
are only possible when the widget is created). Not ideal. You'll

probably want to use UPDATE=0/1 to avoid flickering.

Here's a trick that avoids all that killing/recreating. Use a

bulletin board base (no /ROW or /COLUMN), and then layer two bases
inside it: one which holds your draw widget, offset by 10 pixels in x an

y, and one empty base which has FRAME=10 set, whose only purpose in life
is to display that frame. Simply map and unmap the empty draw base to
add/remove the frame as necessary. Something like:

Page 4 of 18 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23382&goto=50369#msg_50369
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=50369
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

IDL> b=widget_base()

IDL> b1=widget_base(b,xsize=200,ysize=200,xpad=10,ypad=10)

IDL> t=widget_draw(b1,xsize=200,ysize=200)

IDL> b2=widget_base(b,xsize=200,ysize=200,FRAME=10)

IDL> widget_control, b,/realize

IDL> widget_control, b2,map=0 ; remove frame

IDL> widget_control, b2,map=1 & widget_control, bl,map=1 ; add frame back

To make it easier, wrap this functionality up in a compound
"frame-toggle-draw” widget of some sort, and then layout as many of
these as you need. | might instead make it an object widget for
additional convenience (so | can pass it an image to draw, tell it to
erase, etc.), but a regular compound widget would work as well. Then
something like:

widget_control,frame_toggle _draw_widget_id,SET_VALUE=0 ; turn frame off
could be enough to "de-select" that draw.

JD

Subject: Re: border around draw widget
Posted by Laurens on Wed, 27 Sep 2006 21:35:34 GMT

View Forum Message <> Reply to Message

JD Smith wrote:

> On Wed, 27 Sep 2006 15:42:43 +0200, Laurens wrote:

>

>> Hi,

>>

>> | have a couple of draw widgets displaying various gamma-scans. Now the
>> user has to select two of them by clicking on them; done.

>> But now | want to let the user know where he clicked, so is it possible
>> to draw some sort of red border of a few pix around the clicked

>> draw-widget? | know they have a frame property, but that's just too thin
>> and doesn't attract attention...

You could make the frame thicker. Something like:

IDL> b=widget_base(/ROW)

IDL> t=widget_draw(b,xsize=200,ysize=200,FRAME=10)
IDL> b2=widget_base(b,xsize=200,ysize=200,xpad=10,ypad=10,/COLUMN)
IDL> t2=widget_draw(b2,xsize=200,ysize=200)
IDL> widget_control, b,/realize

VVVVYVVYVYVYVYV

Unfortunately with this setup, you'll have to kill and re-create

Page 5 of 18 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5737
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23382&goto=50364#msg_50364
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=50364
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

everything whenever the user selects a new draw widget (since FRAME's
are only possible when the widget is created). Not ideal. You'll
probably want to use UPDATE=0/1 to avoid flickering.

Here's a trick that avoids all that killing/recreating. Use a

bulletin board base (no /ROW or /COLUMN), and then layer two bases
inside it: one which holds your draw widget, offset by 10 pixels in x an

y, and one empty base which has FRAME=10 set, whose only purpose in life
is to display that frame. Simply map and unmap the empty draw base to
add/remove the frame as necessary. Something like:

IDL> b=widget_base()

IDL> b1=widget_base(b,xsize=200,ysize=200,xpad=10,ypad=10)

IDL> t=widget_draw(b1,xsize=200,ysize=200)

IDL> b2=widget_base(b,xsize=200,ysize=200,FRAME=10)

IDL> widget_control, b,/realize

IDL> widget_control, b2,map=0 ; remove frame

IDL> widget_control, b2,map=1 & widget_control, b1,map=1 ; add frame back

To make it easier, wrap this functionality up in a compound
"frame-toggle-draw” widget of some sort, and then layout as many of
these as you need. | might instead make it an object widget for
additional convenience (so | can pass it an image to draw, tell it to
erase, etc.), but a regular compound widget would work as well. Then
something like:

widget_control,frame_toggle_draw_widget_id,SET_VALUE=0 ; turn frame off

could be enough to "de-select" that draw.

VVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYVYV

JD
>

Thanks very much for that explanation!
Could you tell me how to make such a widget-object? It sounds like
something | was already thinking about...

Laurens

Subject: Re: border around draw widget
Posted by David Fanning on Wed, 27 Sep 2006 21:45:51 GMT

View Forum Message <> Reply to Message

Laurens writes:

> Could you tell me how to make such a widget-object? It sounds like
> something | was already thinking about...

Page 6 of 18 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23382&goto=50363#msg_50363
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=50363
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Oh, I am SO glad | am working this week. | could hardly
resist this. :-)

Cheers,
David

P.S. If you don't understand JD's answer (believe me,
| only understand a fraction of them!), you could have
a look at something like FSC_Inputfield, which is a
sort of object/widget, albeit one that is too complicated
to serve as much of an example.

David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: border around draw widget
Posted by JD Smith on Wed, 27 Sep 2006 22:23:36 GMT

View Forum Message <> Reply to Message

On Wed, 27 Sep 2006 23:35:34 +0200, Laurens wrote:

> Thanks very much for that explanation!
> Could you tell me how to make such a widget-object? It sounds like
> something | was already thinking about...

It sounds fancier than it is. It's basically an object, which:

1. Sets up a widget heirarchy in the normal way (usually in its Init
method).

2. Saves its "state" information not in a structure in a UVALUE but in
the class data itself (e.g. self.*).

3. Calls XManager (often, but not necessarily, in its Init method) to
generate events on that widget heirarchy.

4. Uses the trick | outline to inject the events flowing forth from
the widgets created to some class method (often named "Event").

The main advantages of this method:

1. You get state information "for free", quite nicely mapped to class
data.

2. You automatically avoid common blocks for state info, with their
associated collision risks if multiple identical widgets run at the
same time.

3. You are never left with state information "in the air", if you use

Page 7 of 18 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23382&goto=50362#msg_50362
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=50362
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

INO_COPY to be efficient when retrieving your state structure from
a UVALUE. This greatly aids debugging, since crashes to the code
usually can be recovered from with a simple RETALL.

4. You quickly realize that the normal event flow embodied in "normal”
widget prgramming is limiting, and can roll your own communication
among objects that suits your needs. This is particularly useful
if you have many different perhaps unrelated application components
that need to communicate with eachother.

A schematic usage would be:
oDraw=0bj_new('SelectableDrawPane’,base)

which would place a new compound widget into base. It might implement
some methods "Select" and "DeSelect", or you could have it trap the
selection "clicks" and automagically select/deselect itself. Once you

have the apparatus in place, you can then have fun implementing other
methods for your object, drawing and erasing, etc.

| should note that none of this is necessary to use the "base on top
of a base" trickery | outlined before, it just makes it easier and more
powerful.

JD

Subject: Re: border around draw widget
Posted by Laurens on Thu, 28 Sep 2006 07:21:16 GMT

View Forum Message <> Reply to Message

JD Smith wrote:

> On Wed, 27 Sep 2006 23:35:34 +0200, Laurens wrote:

>

>> Thanks very much for that explanation!

>> Could you tell me how to make such a widget-object? It sounds like
>> something | was already thinking about...

It sounds fancier than it is. It's basically an object, which:

1. Sets up a widget heirarchy in the normal way (usually in its Init
method).

2. Saves its "state" information not in a structure in a UVALUE but in
the class data itself (e.g. self.*).

3. Calls XManager (often, but not necessarily, in its Init method) to
generate events on that widget heirarchy.

4. Uses the trick | outline to inject the events flowing forth from
the widgets created to some class method (often named "Event").

VVVVVVYVVYVYVYVYV

Page 8 of 18 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5737
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23382&goto=50360#msg_50360
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=50360
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYV

The main advantages of this method:

1. You get state information "for free", quite nicely mapped to class
data.

2. You automatically avoid common blocks for state info, with their
associated collision risks if multiple identical widgets run at the
same time.

3. You are never left with state information "in the air", if you use
INO_COPY to be efficient when retrieving your state structure from
a UVALUE. This greatly aids debugging, since crashes to the code
usually can be recovered from with a simple RETALL.

4. You quickly realize that the normal event flow embodied in "normal”
widget prgramming is limiting, and can roll your own communication
among objects that suits your needs. This is particularly useful
if you have many different perhaps unrelated application components
that need to communicate with eachother.

A schematic usage would be:
oDraw=0bj_new('SelectableDrawPane’,base)

which would place a new compound widget into base. It might implement
some methods "Select" and "DeSelect”, or you could have it trap the
selection "clicks" and automagically select/deselect itself. Once you

have the apparatus in place, you can then have fun implementing other
methods for your object, drawing and erasing, etc.

| should note that none of this is necessary to use the "base on top
of a base" trickery | outlined before, it just makes it easier and more
powerful.

JD

err...well, I'll try hehe; If | understand it correctly, this implies

writing code in the GUI.pro file, with as disadvantage that | can't use
my .prc file to regenerate GUI?

That's some strange behaviour | noticed earlier...if you change position
of a widget and save the GUI, all self-written code is simply gone :S

If I've created that object, where could | change its structure, like

the select and deselect functions?

Sorry for the quite explicit way of asking, but hey I'm not as
experienced in writing IDL as you guys huh (will one ever be haha), so
I'm just trying to learn from it...

Thanks though for what you've brought up on ideas so far...

Laurens

Page 9 of 18 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Cheers David) It's quite funny, I live in the Netherlands and when we
use the word "cheers", its when we take a beer haha; so every "cheers
underneath your msgs lets me think you're having quite a good time lol.

Subject: Re: border around draw widget
Posted by Rick Towler on Thu, 28 Sep 2006 17:17:24 GMT

View Forum Message <> Reply to Message

| think we have strayed way off on this one... While JD's suggestion is
clever, from a usability perspective | don't think it is as effective as

a colored border or a color shift of the image. And adding a border is
trivial.

If you haven't done this already, you'll want all of your draw widgets

to share the same click event handler. You mention in your original
post that your displaying gamma-scans. I'll assume these are images of
some sort. I'll further assume you are using direct graphics and are
displaying the image using TV (I know in reality you are using one of
David's or Liam's improved versions).

The one thing | don't know is how you are storing your application data.
You are going to need to keep the selection state of each draw widget

and a copy of the image displayed in the widget. In my example | put

them in a structure with the fields "image" and "selected" and store

that in each draw widgets UVALUE. You may already have this data stored

someplace else.

pro drawClick_event, ev

WIDGET_CONTROL, ev.id, GET_UVALUE=thisData, /NO_COPY
WIDGET_CONTROL, ev.id, GET_VALUE=thisWindow

if (thisData.selected) then begin
; window is currently selected, deselect
WSET, thisWindow
TV, thisData.image
thisData.selected = 0

endif else begin
; window is currently not selected
WSET, thisWindow
OPLOT, [0,0,1,1,0], [0,1,1,0,0], COLOR=255, THICK=4
thisData.selected = 1

endelse

WIDGET_CONTROL, ev.id, SET_UVALUE=thisData

Page 10 of 18 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2728
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23382&goto=50343#msg_50343
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=50343
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

end

You'll notice that the border isn't perfect but it is close. Also,
you'll want to modify the COLOR value accordingly.

-Rick

Laurens wrote:

> JD Smith wrote:

>> On Wed, 27 Sep 2006 23:35:34 +0200, Laurens wrote:

>>

>>> Thanks very much for that explanation!

>>> Could you tell me how to make such a widget-object? It sounds like
>>> something | was already thinking about...

>>

>> |t sounds fancier than it is. It's basically an object, which:

>>

>> 1. Sets up a widget heirarchy in the normal way (usually in its Init

>> method).

>> 2. Saves its "state" information not in a structure in a UVALUE but in
>> the class data itself (e.g. self.*).

>> 3. Calls XManager (often, but not necessarily, in its Init method) to
>> generate events on that widget heirarchy.

>> 4. Uses the trick | outline to inject the events flowing forth from

>> the widgets created to some class method (often named "Event").
>>

>> The main advantages of this method:

>>

>> 1. You get state information "for free", quite nicely mapped to class
>> data.

>> 2. You automatically avoid common blocks for state info, with their
>> associated collision risks if multiple identical widgets run at the

>> same time.

>> 3. You are never left with state information "in the air", if you use

>> /NO_COPY to be efficient when retrieving your state structure from
>> a UVALUE. This greatly aids debugging, since crashes to the code
>> usually can be recovered from with a simple RETALL.

>> 4. You quickly realize that the normal event flow embodied in "normal”
>> widget prgramming is limiting, and can roll your own communication
>> among objects that suits your needs. This is particularly useful

>> if you have many different perhaps unrelated application components
>> that need to communicate with eachother.

>>

>> A schematic usage would be:
>>

Page 11 of 18 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVVVVVVVVVVVVYVYVYVYVYV

oDraw=o0bj_new('SelectableDrawPane',base)

which would place a new compound widget into base. It might implement

some methods "Select" and "DeSelect”, or you could have it trap the
selection "clicks" and automagically select/deselect itself. Once you
have the apparatus in place, you can then have fun implementing other
methods for your object, drawing and erasing, etc.

| should note that none of this is necessary to use the "base on top
of a base" trickery | outlined before, it just makes it easier and more
powerful.

JD

err...well, I'll try hehe; If | understand it correctly, this implies

writing code in the GUI.pro file, with as disadvantage that | can't use
my .prc file to regenerate GUI?

That's some strange behaviour | noticed earlier...if you change position
of a widget and save the GUI, all self-written code is simply gone :S

If I've created that object, where could | change its structure, like

the select and deselect functions?

Sorry for the quite explicit way of asking, but hey I'm not as
experienced in writing IDL as you guys huh (will one ever be haha), so
I'm just trying to learn from it...

Thanks though for what you've brought up on ideas so far...
Laurens
Cheers David) It's quite funny, I live in the Netherlands and when we

use the word "cheers", its when we take a beer haha; so every "cheers”
underneath your msgs lets me think you're having quite a good time lol.

Subject: Re: border around draw widget
Posted by Laurens on Wed, 04 Oct 2006 08:09:28 GMT

View Forum Message <> Reply to Message

Rick Towler wrote:

VVVVYVYVYVYV

| think we have strayed way off on this one... While JD's suggestion is
clever, from a usability perspective | don't think it is as effective as

a colored border or a color shift of the image. And adding a border is
trivial.

If you haven't done this already, you'll want all of your draw widgets
to share the same click event handler. You mention in your original
post that your displaying gamma-scans. I'll assume these are images of

Pag

e 12 of 18 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5737
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23382&goto=50536#msg_50536
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=50536
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

some sort. I'll further assume you are using direct graphics and are
displaying the image using TV (I know in reality you are using one of
David's or Liam's improved versions).

The one thing | don't know is how you are storing your application data.
You are going to need to keep the selection state of each draw widget

and a copy of the image displayed in the widget. In my example | put

them in a structure with the fields "image" and "selected" and store

that in each draw widgets UVALUE. You may already have this data stored
someplace else.

pro drawClick_event, ev

WIDGET_CONTROL, ev.id, GET_UVALUE=thisData, INO_COPY
WIDGET_CONTROL, ev.id, GET_VALUE=thisWindow

if (thisData.selected) then begin
; window is currently selected, deselect
WSET, thisWindow
TV, thisData.image
thisData.selected = 0

endif else begin
; window is currently not selected
WSET, thisWindow
OPLOT, [0,0,1,1,0], [0,1,1,0,0], COLOR=255, THICK=4
thisData.selected = 1

endelse

WIDGET_CONTROL, ev.id, SET_UVALUE=thisData
end
You'll notice that the border isn't perfect but it is close. Also,
you'll want to modify the COLOR value accordingly.

-Rick

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYVY

>

> Laurens wrote:

>> JD Smith wrote:

>>> On Wed, 27 Sep 2006 23:35:34 +0200, Laurens wrote:

>>>

>>>> Thanks very much for that explanation!

>>>> Could you tell me how to make such a widget-object? It sounds like

>>>> something | was already thinking about...
>>>

Page 13 of 18 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

It sounds fancier than it is. It's basically an object, which:

1. Sets up a widget heirarchy in the normal way (usually in its Init
method).

2. Saves its "state" information not in a structure in a UVALUE but in
the class data itself (e.g. self.*).

3. Calls XManager (often, but not necessarily, in its Init method) to
generate events on that widget heirarchy.

4. Uses the trick | outline to inject the events flowing forth from
the widgets created to some class method (often named "Event").

The main advantages of this method:

1. You get state information "for free", quite nicely mapped to class
data.

2. You automatically avoid common blocks for state info, with their
associated collision risks if multiple identical widgets run at the
same time.

3. You are never left with state information "in the air", if you use
/INO_COPY to be efficient when retrieving your state structure from
a UVALUE. This greatly aids debugging, since crashes to the code
usually can be recovered from with a simple RETALL.

4. You quickly realize that the normal event flow embodied in "normal”
widget prgramming is limiting, and can roll your own communication
among objects that suits your needs. This is particularly useful
if you have many different perhaps unrelated application components
that need to communicate with eachother.

A schematic usage would be:
oDraw=o0bj_new('SelectableDrawPane’',base)

which would place a new compound widget into base. It might implement
some methods "Select" and "DeSelect", or you could have it trap the
selection "clicks" and automagically select/deselect itself. Once you

have the apparatus in place, you can then have fun implementing other
methods for your object, drawing and erasing, etc.

| should note that none of this is necessary to use the "base on top
of a base" trickery | outlined before, it just makes it easier and more
powerful.

JD

>> err...well, I'll try hehe; If | understand it correctly, this implies

>> writing code in the GUI.pro file, with as disadvantage that | can't
>> use my .prc file to regenerate GUI?

>> That's some strange behaviour | noticed earlier...if you change

Page 14 of 18 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> position of a widget and save the GUI, all self-written code is simply
>> gone .S

>>

>> |f I've created that object, where could | change its structure, like

>> the select and deselect functions?

>> Sorry for the quite explicit way of asking, but hey I'm not as

>> experienced in writing IDL as you guys huh (will one ever be haha), so
>> |'m just trying to learn from it...

>>

>> Thanks though for what you've brought up on ideas so far...

>>

>> Laurens

>>

>> Cheers David :) It's quite funny, | live in the Netherlands and when

>> we use the word "cheers", its when we take a beer haha; so every

>> "cheers" underneath your msgs lets me think you're having quite a good
>> time lol.

Thanks very much! That was more about was | had in mind... since | only
work once a week on this program | happened to have made nothing yet...

| use a class-object to store values like which one is selected. For

what | understand, the

OPLOT, [0,0,1,1,0], [0,1,1,0,0], COLOR=255, THICK=4

line draws a rectangle around the object, but how do you remove it when
its deselected? the "TV, thisData.image" command only draws the actual
image, it seems.

Thanks again, and yeah, of course I'm using david's TVimage function :)
in fact, the original TV function didn't work for me ;)

Subject: Re: border around draw widget
Posted by Laurens on Wed, 04 Oct 2006 09:18:53 GMT

View Forum Message <> Reply to Message

Rick Towler wrote:

| think we have strayed way off on this one... While JD's suggestion is
clever, from a usability perspective | don't think it is as effective as

a colored border or a color shift of the image. And adding a border is
trivial.

If you haven't done this already, you'll want all of your draw widgets

to share the same click event handler. You mention in your original
post that your displaying gamma-scans. I'll assume these are images of
some sort. I'll further assume you are using direct graphics and are
displaying the image using TV (I know in reality you are using one of
David's or Liam's improved versions).

VVVVVVYVVYVYVYV

Page 15 of 18 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5737
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23382&goto=50535#msg_50535
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=50535
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

The one thing | don't know is how you are storing your application data.
You are going to need to keep the selection state of each draw widget

and a copy of the image displayed in the widget. In my example | put

them in a structure with the fields "image" and "selected" and store

that in each draw widgets UVALUE. You may already have this data stored
someplace else.

pro drawClick_event, ev

WIDGET_CONTROL, ev.id, GET_UVALUE=thisData, /NO_COPY
WIDGET_CONTROL, ev.id, GET_VALUE=thisWindow

if (thisData.selected) then begin
; window is currently selected, deselect
WSET, thisWindow
TV, thisData.image
thisData.selected = 0

endif else begin
; window is currently not selected
WSET, thisWindow
OPLOT, [0,0,1,1,0], [0,1,1,0,0], COLOR=255, THICK=4
thisData.selected = 1

endelse

WIDGET_CONTROL, ev.id, SET_UVALUE=thisData
end
You'll notice that the border isn't perfect but it is close. Also,
you'll want to modify the COLOR value accordingly.

-Rick

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

>

> Laurens wrote:

>> JD Smith wrote:

>>> On Wed, 27 Sep 2006 23:35:34 +0200, Laurens wrote:

>>>

>>>> Thanks very much for that explanation!

>>>> Could you tell me how to make such a widget-object? It sounds like
>>>> something | was already thinking about...

>>>

>>> |t sounds fancier than it is. It's basically an object, which:

>>>

>>> 1. Sets up a widget heirarchy in the normal way (usually in its Init

Page 16 of 18 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>

>>

>>

>>

>>

>>

>>

method).

2. Saves its "state" information not in a structure in a UVALUE but in
the class data itself (e.g. self.*).

3. Calls XManager (often, but not necessarily, in its Init method) to
generate events on that widget heirarchy.

4. Uses the trick | outline to inject the events flowing forth from
the widgets created to some class method (often named "Event").

The main advantages of this method:

1. You get state information "for free", quite nicely mapped to class
data.

2. You automatically avoid common blocks for state info, with their
associated collision risks if multiple identical widgets run at the
same time.

3. You are never left with state information "in the air", if you use
/INO_COPY to be efficient when retrieving your state structure from
a UVALUE. This greatly aids debugging, since crashes to the code
usually can be recovered from with a simple RETALL.

4. You quickly realize that the normal event flow embodied in "normal”
widget prgramming is limiting, and can roll your own communication
among objects that suits your needs. This is particularly useful
if you have many different perhaps unrelated application components
that need to communicate with eachother.

A schematic usage would be:
oDraw=o0bj_new('SelectableDrawPane’,base)

which would place a new compound widget into base. It might implement
some methods "Select" and "DeSelect", or you could have it trap the
selection "clicks" and automagically select/deselect itself. Once you

have the apparatus in place, you can then have fun implementing other
methods for your object, drawing and erasing, etc.

| should note that none of this is necessary to use the "base on top
of a base" trickery | outlined before, it just makes it easier and more
powerful.

JD

err...well, I'll try hehe; If | understand it correctly, this implies

writing code in the GUI.pro file, with as disadvantage that | can't
use my .prc file to regenerate GUI?

That's some strange behaviour | noticed earlier...if you change
position of a widget and save the GUI, all self-written code is simply
gone :S

Page

17 of 18 ---- Generated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> |If I've created that object, where could | change its structure, like

>> the select and deselect functions?

>> Sorry for the quite explicit way of asking, but hey I'm not as

>> experienced in writing IDL as you guys huh (will one ever be haha), so
>> |'m just trying to learn from it...

>>

>> Thanks though for what you've brought up on ideas so far...

>>

>> Laurens

>>

>> Cheers David :) It's quite funny, I live in the Netherlands and when

>> we use the word "cheers", its when we take a beer haha; so every

>> "cheers" underneath your msgs lets me think you're having quite a good
>> time lol.

Never mind, it already works :) Thnx a bunch!

Subject: Re: border around draw widget
Posted by JD Smith on Mon, 09 Oct 2006 19:38:04 GMT

View Forum Message <> Reply to Message

On Thu, 28 Sep 2006 10:17:24 -0700, Rick Towler wrote:

> | think we have strayed way off on this one... While JD's suggestion is
> clever, from a usability perspective | don't think it is as effective as

> a colored border or a color shift of the image. And adding a border is
> trivial.

Yes, trivial, unless you need all pixels for drawing. Yes, you could just
draw over the top of the image, assuming the loss of a few pixels around
the edge is irrelevant. Otherwise, the base-on-base trick might be worth
it, to keep your drawing code simple (...I have a canvas which is 248x248
pixels if selected, or 256x256 otherwise...).

JD

Page 18 of 18 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23382&goto=50582#msg_50582
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=50582
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

