Subject: Re: how to handle 3-D data
Posted by Fergus Gallagher on Wed, 18 Jan 1995 10:20:32 GMT

View Forum Message <> Reply to Message

surinder@eng.umd.edu (Surinder P. Singh) wrote:

| get data out put from
FORTRAN 77, a function
F(i,j.k) .

What is the best way to write this data and read by idl ?
Can i increse speed of reading and writing by unformatted data ?

VVVVYVYVYVYV

Yes - unformatted reading & writing is MUCH faster.

If you're on unix, remember to use the /F77_UNFORMATTED keyword (F77
records have extra longwords at both ends.

In F77 you can write

open(unit,"data.dat",form="unformatted",....)
write(unit) F

and read with
openr,unit,/get_lun,/f77_unformatted
a = fltarr(100,100,100) ; for example
readu,unit,a
free_lin,unit

See IDL UG, 17-44 ff

Fergus

Subject: Re: how to handle 3-D data
Posted by n9140397 on Wed, 18 Jan 1995 18:23:28 GMT

View Forum Message <> Reply to Message

In article <3fe48v$3eh@maojo.eng.umd.edu> surinder@eng.umd.edu (Surinder P. Singh) writes:
>

> | get data out put from

> FORTRAN 77, a function

> F(i,j,k) .

>

> What is the best way to write this

> data and read by idl ?

Page 1 of 4 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=849
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=2374&goto=3376#msg_3376
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=3376
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=663
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=2374&goto=3373#msg_3373
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=3373
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> Can i increse speed of reading
> and writing by unformatted data ?

You will increase speed and save disk space (generally) by
using binary files.

Also, if dealing with multiple 3-d data sets (eg. a timeseries
of a 3-d field) or to extract regions from disk quickly,
(random access binary files), look into the netcdf routines.
They are also available from idl, FORTRAN, and C.

see ftp: unidata.ucar.edu:pub/netcdf/FAQ

Mike

S o +

| Michael Hamilton | Internet: hamilton@mungu.ucsd.edu |
| Climate Research Division | voice: (619) 534-0855 |

| Scripps Institute of Oceanography | |
S —— Ao +

Subject: Re: how to handle 3-D data
Posted by thompson on Thu, 26 Jan 1995 19:13:10 GMT

View Forum Message <> Reply to Message

mombasa@kronos.arc.nasa.gov (Tarang Kumar Patel) writes:
> thompson@orpheus.nascom.nasa.gov (William Thompson) writes:
>> daffer@primenet.com writes:

>>> |n <3fa920%4ve @mojo.eng.umd.edu>, surinder@eng.umd.edu (Surinder P. Singh) writes:
>>>>

>>>>

>>>>

>>>> | get data out put from

>>>> FORTRAN 77, a function

>>>> F(ij,K) .

>>>>

>>>> What is the best way to write this

>>>> data and read by idl ?

>>>> Can i increse speed of reading

>>>> and writing by unformatted data ?

>>>>

>>> Definately use unformated data. To write a four byte float in full precision as
>>> formatted data (i.e. text) takes 8 or [9 bytes] (7 digits + decimal

>>> [+ minus sign]), four of five bytes more than in binary representation.

Page 2 of 4 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=35
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=2374&goto=3407#msg_3407
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=3407
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> Just remember that IDL and Fortran think of arrays different ways. | forget
>>> exactly the way you say this, but | think the expression is that Fortran is row
>>> major and IDL is column major. If you don't impose some output

>>> format by means of a do loop around the output statment or an implied

>>> do loop in the format statement, then if the array that is written out has

>>> dimensions 3 X 4 X 5 than it should be read inas 5 X 4 X 3.

>> That's wrong, if one is speaking about Interactive Data Language from Research
>> Systems Incorporated. Perhaps the author was thinking about Interface

>> Definition Language--1 don't know anything about that. However, both RSI's IDL
>> and FORTRAN address arrays in the same way. | don't remember the terminology
>> either, but in both IDL and Fortran the first dimension in the array is the one

>> that changes first--i.e. the element (2,1) follows immediately after the

>> element (1,1). Both behave in exactly the opposite way from C.

> Yes, the storage is same for IDL and FORTRAN i.e 1st DIMENSION varying
fastest. However IDL arrays differ in that the 1st dimension is the COLUMN
index and not the ROW index.

VvV VvV

for example
a =indgen(2,3) ; 2 columns, 3 rows
print,a

VVVVYVYVYV
o
H

> where a(0,0) =0, a(0,1) = 2, a(0,2) =4 and so on

FORTRAN and C adhere to MATRIX notation. Thus in FORTRAN this would appear
asa(l,1)=0a(2,1) =2, and in C a[0][0]=1, a[1][0] = 2

The fact that FORTRAN stores an array in ,e,ory as row major has nothing

to do with the way a user address's the array, thats really code efficiency

issue. Though as far as storage is concerned IDL and FORTRAN are the same i.e
1st DIMENSION varying the fastest, however the 1st dimension has different
meanings

V VVVVYVYV

> So storage wise the elements of the array would appear in a consecutive order
> as follows

>

> Thus for the above example 0,1,2,3,4,5 are stored in that sequence

> In IDL notation a(0,0), a(1,0), a(0,1) note the 1st dimension is the COLUMN

> In FORTRAN notation a(1,1), a(2,1), a(3,1) " Ist * " " ROW

> and thus this would be 0,2,4,1,3,5

>

> In C notation a[0][0],a[0][1],a[1][O],a[1][1] " 1st " " " ROW

Page 3 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> and thus this would be in memory as 0,1,2,3,4,5

> So you see this really confuses matters. The situation is made worse by RSI's
> manual claiming that IDL and FORTRAN ordering are a like i.e row major.
> Well IDL is not row major in the classic notation of MATRICES.

You must be using a different version of Fortran than I'm using. | put
together the following short test program in both Fortran and IDL

Fortran:
program test
dimension a(5,3)
open(unit=1,file="test.dat',form="formatted’,readonly,status ='old")
read (1,*) a
read (*,*) i]
write (*,*) a(i,))
end

IDL:
pro test
a = fltarr(5,3)
openr,1,'test.dat'
readf,1,a
read,i,]
print,a(i-1,j-1)
end

test.dat
1 20 300 4000 50000
11 12 13 14 15
111 222 333 444 555

Running this on a VAX/VMS computer, | get the same results from both the VMS
and Unix versions no matter what indices | type in. Both IDL and any version

of Fortran I've ever run into work exactly the same way. They're both the
opposite of the way C treats arrays.

Bill Thompson

Page 4 of 4 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

