
Subject: IDL_IDLBridge GetVar vs. Shared Memory
Posted by Dick Jackson on Tue, 05 Dec 2006 21:27:26 GMT
View Forum Message <> Reply to Message

Hi all,

Using IDL_IDLBridge has been very helpful in some of our work lately, helping us
to get more processing done while one IDL process is waiting on a DLL, and other
fun. I thought I'd share some findings that show how results can come back 4-10
times faster using shared memory (SHMMAP, etc.) rather than GetVar(). Any
comments on this are very welcome, and I'd be interested to see how this plays
out on other hardware.

Notes:

I split out the SHM Cleanup timing since some applications may not require
cleanup between successive calls.

I thought it a bit odd to have to do this when assigning the value on the bridge
process:
 oBridge -> Execute, "shmA[0,0,0,0] = a"
... but if you use [0] then only the first row of values is filled in. Sure,
it's faster, but... :-) (and if you use [0,0] only the first 2D plane is filled
in, etc.) Here's my !Version:

{ x86 Win32 Windows Microsoft Windows 6.3 Mar 23 2006 32 64}

I'll send another posting with the .pro file as an attachment, in case that's
more convenient for some to use.

Cheers,
-Dick

--
Dick Jackson Software Consulting http://www.d-jackson.com
Victoria, BC, Canada +1-250-220-6117 dick@d-jackson.com

=====

PRO SHMvsGetVar

;; Using an IDL_IDLBridge process, test timings of getting results back
;; using shared memory (SHM) vs. oBridge -> GetVar()
;;
;; SHM appears to be four to ten times faster in my testing.
;; Dick Jackson - dick@d-jackson.com

Page 1 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2718
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23743&goto=51692#msg_51692
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=51692
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

oBridge = Obj_New('IDL_IDLBridge')
shmName = 'SHMvsGetVar'

;; Describe sizes of arrays to use for testing (as strings)

sizes = ['10', '1E7', '[10,1E6]', '[1E6,10]', '[1E4,1E3]', '[1E2,1E2,1E3]']
;; '1E8','[10,1E7]','[1E7,10]','[1E4,1E4]','[1E3,1E2,1E3]','[1E 2,1E2,1E2,1E2]']

nTests = N_Elements(sizes)

FOR testI=0, nTests-1 DO BEGIN

 sizeStr = sizes[testI]
 ok = Execute('sizeNum = Long('+sizeStr+')')
 IF ~ok THEN Message, 'Execute() failed: check sizeStr "'+sizeStr+'"'

 Print, 'Testing with byte array of size: '+sizeStr
 oBridge -> Execute, 'a=BIndGen('+sizeStr+')'
 localA = BIndGen(sizeNum)

 ;; Test SHM method

 t0 = SysTime(/Seconds)
 oBridge -> Execute, "SHMMap,'"+shmName+"',/Byte,Dimension="+sizeStr
 oBridge -> Execute, "shmA = SHMVar('"+shmName+"')"
 oBridge -> Execute, "shmA[0,0,0,0] = a" ; Must have N_Dims(a) or more (bug?)
 SHMMap, shmName,/Byte,Dimension=sizeNum
 shmA = SHMVar(shmName)
 shmTime = SysTime(/Seconds)-t0
 Print, Format="(' SHM: ',F0.3,' s')",shmTime

 ;; Check result
 IF ~(Array_Equal(Size(shmA), Size(localA)) && $
 Array_Equal(shmA, localA)) THEN Print, ' *** Result check failed!'

 ;; Remove references to mapped variables and unmap memory segments
 t0 = SysTime(/Seconds)
 shmA = 0B
 SHMUnmap, shmName
 oBridge -> Execute, "shmA = 0B"
 oBridge -> Execute, "SHMUnmap,'"+shmName+"'"
 Print, Format="(' SHM+Cleanup:',F0.3,' s')",shmTime+(SysTime(/Seconds)-t0)

 ;; Test GetVar method

 t0 = SysTime(/Seconds)
 getVarA = oBridge -> GetVar('a')
 Print, Format="(' GetVar: ',F0.3,' s')",SysTime(/Seconds)-t0

Page 2 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ;; Check result
 IF ~(Array_Equal(Size(getVarA), Size(localA)) && $
 Array_Equal(getVarA, localA)) THEN Print, ' *** Result check failed!'

 Wait, 0.001 ; To allow Print statements to flush

ENDFOR

Obj_Destroy, oBridge

END

Subject: Re: IDL_IDLBridge GetVar vs. Shared Memory
Posted by JD Smith on Tue, 05 Dec 2006 23:16:43 GMT
View Forum Message <> Reply to Message

On Tue, 05 Dec 2006 21:27:26 +0000, Dick Jackson wrote:

> Hi all,
>
> Using IDL_IDLBridge has been very helpful in some of our work lately, helping us
> to get more processing done while one IDL process is waiting on a DLL, and other
> fun. I thought I'd share some findings that show how results can come back 4-10
> times faster using shared memory (SHMMAP, etc.) rather than GetVar(). Any
> comments on this are very welcome, and I'd be interested to see how this plays
> out on other hardware.

Thanks Dick, looks very interesting.

I tried it, and shared memory definitely seems to be much faster for me,
up to 10x. I also added back your 1E8 case, and got this unhelpful error:

IDL> shmvsgetvar
% Loaded DLM: IDL_IDLBRIDGE.
Testing with byte array of size: 1E8
% IDL_IDLBRIDGE Error: Undefined variable: 'a'
% Execution halted at: SHMVSGETVAR 39
 /home/jdsmith/idl/test/test_shm_iib.pro
% $MAIN$

Any reason why you can't create and retrieve a 100MB array? Then I
recalled advice from earlier this week:

 echo 1073741824 > /proc/sys/kernel/shmmax

After increasing this limit, it ran fine. The default is 32MB in

Page 3 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23743&goto=51788#msg_51788
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=51788
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Linux/Intel.

What's quite interesting, however, is that I noticed the SHMMap version
didn't run into this limit. Without any modification to shmmax, it would
still happily send 1GB across shared memory. It wasn't abundantly clear
why IDL_IDLBridge's GetVar hits this limit, while SHMMap does not.

I thought perhaps the Bridge uses SYSV shared memory segments (whereas
the latter defaults to the more modern POSIX flavor), I modified the
code to read:

 SHMMap, shmName,/Byte,Dimension=sizeNum,/SYSV

and sure enough, hit the 32MB limit quickly. Also, somewhat
strangely, with SYSV shared memory, only 0b was returned from the
shared memory segment. Then I realized you need an "OS handle" for
SYSV, but not for POSIX, since POSIX shared memory just uses the
supplied name with a slash. After passing OS_HANDLE back to the IDL
Bridge, it worked fine. The speed was almost identical (actually SYSV
shared memory seems about 5% faster).

So, it appears that:

1) POSIX shmem "does the right" thing, without any arbitrary limits on the
 amount of shared memory.

2) SYSV shmem runs into a maximum memory limit defined by your
 kernel.

3) IDL_IDLBridge uses SYSV shared memory under UNIX to implement
 GetVar, thus inheriting this limit.

It's not at all clear why they use SYSV shmem for the Bridge, since
they go on about how important POSIX shared memory is and how all
decent Unixes support it, etc.

The bottom line is, not only is it much faster to use SHMMap (without
/SYSV), but it's probably more portable and obviously less likely to
run into arbitrary memory boundaries. So if you plan on passing any
data larger than a few MB through the IDL_IDLBridge, do look into it.

Thanks,

JD

Subject: Re: IDL_IDLBridge GetVar vs. Shared Memory

Page 4 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Posted by Richard French on Wed, 06 Dec 2006 00:40:05 GMT
View Forum Message <> Reply to Message

Timing results with Intel Mac 3 GHz, 8 GB RAM:

IDL> print,!version
{ i386 darwin unix Mac OS X 6.3 Jun 27 2006 32 64}

IDL> shmvsgetvar
Testing with byte array of size: 10
 SHM: 0.000 s
 SHM+Cleanup:0.000 s
 GetVar: 0.000 s
Testing with byte array of size: 1E7
 SHM: 0.016 s
 SHM+Cleanup:0.019 s
 GetVar: 0.125 s
Testing with byte array of size: [10,1E6]
 SHM: 0.030 s
 SHM+Cleanup:0.032 s
 GetVar: 0.126 s
Testing with byte array of size: [1E6,10]
 SHM: 0.017 s
 SHM+Cleanup:0.020 s
 GetVar: 0.128 s
Testing with byte array of size: [1E4,1E3]
 SHM: 0.015 s
 SHM+Cleanup:0.018 s
 GetVar: 0.128 s
Testing with byte array of size: [1E2,1E2,1E3]
 SHM: 0.016 s
 SHM+Cleanup:0.019 s
 GetVar: 0.130 s
Testing with byte array of size: 1E8
 SHM: 0.159 s
 SHM+Cleanup:0.177 s
 GetVar: 1.225 s
Testing with byte array of size: [10,1E7]
 SHM: 0.278 s
 SHM+Cleanup:0.296 s
 GetVar: 1.259 s
Testing with byte array of size: [1E7,10]
 SHM: 0.156 s
 SHM+Cleanup:0.195 s
 GetVar: 1.247 s
Testing with byte array of size: [1E4,1E4]
 SHM: 0.138 s
 SHM+Cleanup:0.157 s

Page 5 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3737
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23743&goto=51787#msg_51787
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=51787
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 GetVar: 1.257 s
Testing with byte array of size: [1E3,1E2,1E3]
 SHM: 0.141 s
 SHM+Cleanup:0.162 s
 GetVar: 1.240 s
Testing with byte array of size: [1E2,1E2,1E2,1E2]
 SHM: 0.152 s
 SHM+Cleanup:0.172 s
 GetVar: 1.241 s
IDL>

Page 6 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

